The question as presented is incomplete, here is the complete question with the multiple choice:
The sequence a1 = 6, an = 3an − 1 can also be
written as:
1) an = 6 ⋅ 3^n
2) an = 6 ⋅ 3^(n + 1)
3) an = 2 ⋅ 3^n
4) an = 2 ⋅ 3^(n + 1)
The correct choice is option 3) an = 2⋅3^n.
If we look at the initial sequence an = 3⋅an-1, and
a1 = 3⋅a0 = 6
a0 = 6/3
a0 = 2
We can now look at the sequence.
a0 = 2
a1 = 6
a2 = 18
a3 = 54
etc...
A common factor in each of those numbers is 2, so we can rewrite the sequence by factoring out 2.
a0 = 2⋅1
a1 = 2⋅3
a2 = 2⋅9
a3 = 2⋅27
The numbers being multiplied by 2 are all factors of 3. So we can rewrite the sequence again as:
a0 = 2⋅3^0
a1 = 2⋅3^1
a2 = 2⋅3^2
a3 = 2⋅3^3
This sequence can now be rewritten as an = 2⋅3^n.
If the pool has 18 married and 22 not married, this means there are 40 people total
this means there’s a 18/40 probability that people who are married will be chosen
18/40 = 2/5
There is a 22/40 probability people who are un married will be chosen
22/40 = 11/20
8(t^2+t-9) should be the answer
Answer:
0.0433
Step-by-step explanation:
Since we have a fixed number of trials (N = 25) and the probability of getting heads is always p = 0.05, we are going to treat this as a binomial distribution.
Using a binomial probability calculator, we find that the probability of obtaining heads from 8 to 17 times is 0.9567 given that the con is fair. The probability of obtaining any other value given that the coin is fair is going to be:
1 - 0.9567 = 0.0433
Since we are going to conclude that the coin is baised if either x<8 or x>17, the probability of judging the coin to be baised when it is actually fair is 4.33%
Answer:
37.5
Step-by-step explanation: