They are alike because both tell what was the truth about somthing.
Answer:
The major structural difference between chromatin and chromosomes is that the latter are more organized and condensed.
Explanation:
Chromatin is genetic material packaged into a complex by special proteins (histones). That complex is in the form of uncoiled structures, so chromatin fibers are long and thin. Chromatin structure is permissive to DNA replication, transcription and recombination events.
On the other hand, chromosomes are highly condensed structures of genetic material that are formed just before the cell division.
Answer:
1)the process being studied in the picture is transpiration I guess
3)the pot is covered with plastic sheet to trap the water (vapour) which is being evaporated
Gelisols are high latitude soils containing permafrost and large amounts of organic matter. ]
Gelisols are soils that are permanently frozen or contain evidence of permafrost near the soil surface. They are found in the Arctic and Antarctic, as well as at extremely high elevations. Additionally they are also found at extremely high elevations in the lower latitudes.
Answer:
The high specific heat of water caused by hydrogen bonding
Explanation:
Specific heat capacity of a substance is the quantity of heat required to raise the temperature of a unit mass of that substance by one degree Celsius (1° C).
Due to the hydrogen bonding present in water, water has a high specific heat capacity of 4184 Joules per kilogram. This means that, water has to absorb 4,184 Joules of heat for the temperature of one kilogram of water to increase 1°C. When compared to other substances such as metals, this is very high. For example, the specific heat capacity of copper is 385 Joules per kilogram which means that it only takes 385 Joules of heat to raise 1 kilogram of copper 1°C.
Therefore water, can absorb a large quantity of heat with very little changes in its temperature. This property of water helps the oceans and seas to serve as heat reservoirs by absorbing a large quantity of heat in hotter seasons and releasing these heat in colder seasons.