Answer:
2 hours, 9 minutes (and 19 seconds if u wanna be exact)
Step-by-step explanation:
Answer:converge at 
Step-by-step explanation:
Given
Improper Integral I is given as

integration of
is -
![I=\left [ -\frac{1}{x}\right ]^{\infty}_3](https://tex.z-dn.net/?f=I%3D%5Cleft%20%5B%20-%5Cfrac%7B1%7D%7Bx%7D%5Cright%20%5D%5E%7B%5Cinfty%7D_3)
substituting value
![I=-\left [ \frac{1}{\infty }-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)
![I=-\left [ 0-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%200-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)

so the value of integral converges at 
Using the binomial distribution, it is found that the probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
For each person, there are only two possible outcomes, either they need correction for their eyesight, or they do not. The probability of a person needing correction is independent of any other person, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- A survey showed that 77% of us need correction, hence p = 0.77.
- 13 adults are randomly selected, hence n = 13.
The probability that at least 12 of them need correction for their eyesight is given by:

In which:



Then:

The probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
More can be learned about the binomial distribution at brainly.com/question/24863377
The rate of increase of population of Hermitville is given by:
PR=(Present Population-Past Population)/(Past population)*100
PR=(186480-142340)/142340×100
PR=31.01%
The population increase in Hermitville is 31.01;
This implies that it's population growth is faster than that of Crabville by a factor of
31.01/26=1.19.
The answer is B