Answer:
Step-by-step explanation:
That really easy Peary it’s not eieoruirbcbdkehbdbs shrine chdiej
Answer:
It should be 5.99x+4, where x is the number of pizzas ordered.
It would be written as a fraction to make the exponent negative put it over one : 1/7^4
Answer:
p=i/rt
Step-by-step explanation:
its p= i over rt
Another triple integral. We're integrating over the interior of the sphere
![x^2+y^2+z^2=2^2](https://tex.z-dn.net/?f=x%5E2%2By%5E2%2Bz%5E2%3D2%5E2)
Let's do the outer integral over z. z stays within the sphere so it goes from -2 to 2.
For the middle integral we have
![y^2=4-x^2-z^2](https://tex.z-dn.net/?f=y%5E2%3D4-x%5E2-z%5E2)
x is the inner integral so at this point we conservatively say its zero. That means y goes from
and ![+\sqrt{4-z^2}](https://tex.z-dn.net/?f=%2B%5Csqrt%7B4-z%5E2%7D)
Similarly the inner integral x goes between ![\pm-\sqrt{4-y^2-z^2}](https://tex.z-dn.net/?f=%5Cpm-%5Csqrt%7B4-y%5E2-z%5E2%7D)
So we rewrite the integral
![\displaystyle \int_{-2}^{2} \int_{-\sqrt{4-z^2}}^{\sqrt{4-z^2}} \int_{-\sqrt{4-y^2-z^2}}^{\sqrt{4-y^2-z^2}} (x^2+xy+y^2)dx \; dy \; dz](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_%7B-2%7D%5E%7B2%7D%20%5Cint_%7B-%5Csqrt%7B4-z%5E2%7D%7D%5E%7B%5Csqrt%7B4-z%5E2%7D%7D%20%5Cint_%7B-%5Csqrt%7B4-y%5E2-z%5E2%7D%7D%5E%7B%5Csqrt%7B4-y%5E2-z%5E2%7D%7D%20%28x%5E2%2Bxy%2By%5E2%29dx%20%5C%3B%20dy%20%5C%3B%20dz)
Let's work on the inner one,
![\displaystyle\int_{-\sqrt{4-y^2-z^2}}^{\sqrt{4-y^2-z^2}} (x^2+xy+y^2)dz](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7B-%5Csqrt%7B4-y%5E2-z%5E2%7D%7D%5E%7B%5Csqrt%7B4-y%5E2-z%5E2%7D%7D%20%28x%5E2%2Bxy%2By%5E2%29dz)
There's no z in the integrand, so we treat it as a constant.
![=(x^2+xy+y^2)z \bigg|_{z=-\sqrt{4-y^2-z^2}}^{z=\sqrt{4-y^2-z^2}}](https://tex.z-dn.net/?f=%3D%28x%5E2%2Bxy%2By%5E2%29z%20%5Cbigg%7C_%7Bz%3D-%5Csqrt%7B4-y%5E2-z%5E2%7D%7D%5E%7Bz%3D%5Csqrt%7B4-y%5E2-z%5E2%7D%7D)
So the middle integral is
I gotta go so I'll stop here, sorry.