Considering the Doppler efect, the frequency heard by the student would change if:
- if the student walked toward the police car.
- if the student walked away from the police car.
- if the police car moved toward the student.
- if the police car moved away from the student.
<h3>Doppler effect</h3>
The Doppler effect is defined as the change in the apparent frequency of a wave produced by the relative motion of the source with respect to its observer. In other words, this effect is the change in the perceived frequency of any wave motion when the sender and receiver, or observer, move relative to each other.
The following expression is considered the general case of the Doppler effect:

Where:
- f', f: Frequency perceived by the receiver and frequency emitted by the transmitter, respectively. Its unit of measurement in the International System (S.I.) is the hertz (Hz), which is the inverse unit of the second (1 Hz = 1 s⁻¹)
- v: Wave propagation speed in the medium. It is constant and depends on the characteristics of the medium. In this case, the speed of sound in air is considered to be 343 m/s.
- vR, vE: Receiver and transmitter speed respectively. Its unit of measure in the S.I. is the m/s
- ±, ∓:
- We will use the + sign:
- In the numerator if the receiver approaches the sender
- In the denominator if the sender moves away from the receiver
- In the numerator if the receiver moves away from the sender
- In the denominator if the sender approaches the receiver
In summary, the Doppler Effect is an alteration of the observed frequency of a sound due to the movement of the source or the observer, that is, they are changes in the frequency and wavelength of a wave due to the relative movement between the wave source and the observer.
<h3>Changes on the frequency </h3>
In this case, considering the Doppler effect, the frequency heard by the student would change if:
- if the student walked toward the police car.
- if the student walked away from the police car.
- if the police car moved toward the student.
- if the police car moved away from the student.
Learn more about Doppler effect:
brainly.com/question/15307081
brainly.com/question/4052291
brainly.com/question/15097772
brainly.com/question/3841958
#SPJ12
Answer:
Q = A ⊕ B = (A AND B) + ( not(A) AND not(B) )
Explanation:
AND gates : only output 1 when both inputs are 1
OR gate: only output 1 when either or both of the inputs are 1
NOT gates: takes only one input ad output the opposite of the input
The required circuit should takes two inputs and outputs a 1 if and only if the two inputs are the same signal.
The two possible scenarios : both input are 1's or 0's
Q = A ⊕ B = (A AND B) + ( not(A) AND not(B) )
A B not(A) not(B) A AND B not(A) AND not(B) Q
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1
Answer:
As waves get closer to a beach they decrease in height.
Explanation:
As a wave crest approaches the shoreline, it is usual that one end of the line is closer to the shoreline than the other. The implication of this is that the energy in a wave is also spread over quite a larger area,this in turn reduces the height of the waves. In other words, refraction often makes waves smaller.
Waves are caused by wind. Wave height in the open ocean is determined by three factors. The greater the wind speed the larger the waves. The greater the duration of the wind (or storm) the larger the waves. The greater the fetch (area over which the wind is blowing - size of storm) the larger the waves.
5lbs in kgs is actually 2.268 kgs
Answer:
15.6m/s
Completed Question;
For a short period of time, the frictional driving force acting on the wheels of the 2.5-Mg van is N= 600t^2 , where t is in seconds. If the van has a speed of 20 km/h when t = 0, determine its speed when t = 5
Explanation:
Mass m = 2500kg
Speed v1 = 20km/h = 20/3.6 m/s = 5.556 m/s
To determine speed v2;
Using the principle of momentum and impulse;
mv1 + ∫₀⁵ F dt = mv2