E. all of the points above
Here are the steps
1: Put the compass on Q and make the width equal to the distance from Q to L. Extend line LM towards the left side of L and draw an arc hitting the line segment on the left side of L
2. <span> Without changing the width and position of the compass, draw an arc between L and M.
3. Without changing the width of the compass, put the compass on the point of intersection of the arc and line LM (left side of L). Draw an arc above line LM.
4. Without changing the width of the compass, put the compass on the point of intersection of the arc and line LM (right side of L). Draw an arc above line LM.
5. Use a straight edge to make a line from the intersection of the two arcs above line LM to Q intersecting through L along the way. </span>
Answer:
y = x + 2
Step-by-step explanation:
You can find the slant asymptote using polynomial long division because the numerator is one degree higher than the denominator.
(x^2+x+4)/(x-1)
I'm not sure how to show long division but you should get:
x+2 with remainder 6
Then your slant asymptote is y = x + 2
You can graph it on Desmos to verify
<h3>
Answer: Choice D</h3>
======================================================
Explanation:
The inequality sign has an "or equal to", which means the boundary line will be solid. We can rule out choices B and C because they have dashed boundary lines.
A solid boundary line means that points on the boundary are part of the solution set.
Now let's see what happens when we plug in a point like (x,y) = (4,0). This will tell us how to shade the blue region.

This is false because -20 is not larger than -1. It's the other way around.
This tells us the point (4,0) is not in the blue shaded region, and it's not on the boundary line either. We can rule out choice A because of this.
The only thing left is choice D, which is the final answer. I recommend plugging a point from this region into the inequality to confirm we have a true statement.
it's irrational
A rational number can be put over a fraction, while this number continues forever