Answer:
I'd say you had a better chance going 5:8
Answer:
z=4
Step-by-step explanation:
6+4=10
Answer:
In order to calculate the expected value we can use the following formula:
And if we use the values obtained we got:
Step-by-step explanation:
Let X the random variable that represent the number of admisions at the universit, and we have this probability distribution given:
X 1060 1400 1620
P(X) 0.5 0.1 0.4
In statistics and probability analysis, the expected value "is calculated by multiplying each of the possible outcomes by the likelihood each outcome will occur and then summing all of those values".
The variance of a random variable Var(X) is the expected value of the squared deviation from the mean of X, E(X).
And the standard deviation of a random variable X is just the square root of the variance.
In order to calculate the expected value we can use the following formula:
And if we use the values obtained we got:
Answer:
The carpenter will not be able to buy 12 '2 by 8 boards' and 14 '4 by 4 boards'.
Step-by-step explanation:
Given:
Amount a carpenter can spend at most = $250
The inequality to represent the amount he can spend on each type of board is given as:

where
represents '2 by 8 boards' and
represents '4 by 4 boards'.
To determine whether the carpenter can buy 12 '2 by 8 boards' and 14 '4 by 4 boards'.
Solution :
In order to check whether the carpenter can buy 12 '2 by 8 boards' and 14 '4 by 4 boards' , we need to plugin the
and
in the given inequality and see if it satisfies the condition or not or in other words (12,14) must be a solution for the inequality.
Plugging in
and
in the given inequality



The above statement can never be true and hence the carpenter will not be able to buy 12 '2 by 8 boards' and 14 '4 by 4 boards'.