Simplify

(d - 10) to

:
\frac{2(d - 10)}{5} [/tex] - 23(d + 6) x 25(d - 10) - 23(d + 6)
Simplify 23(d + 6) x 25(d - 10) to 575(d + 6)(d - 10) :
\frac{2(d - 10)}{5} [/tex] - 575(d + 6)(d - 10) - 23(d + 6)
Then Expand :
\frac{2(d - 10)}{5} [/tex] - 575

+ 5750d - 3450d + 34500 - 23d - 138
Now Collect Like Terms :
\frac{2(d - 10)}{5} [/tex] - 575

+ (5750d - 3450d + 34500 - 23d) + (34500 - 138)
Answer :
\frac{2(d - 10)}{5} [/tex] - 575

+ 2277d + 34362
Hey there!
It’s very much impossible to make this equation without it being an exponent because the result has an exponent in it itself
x⁴ × x²
= (x × x × x × x) + (x × x)
≈ x⁴ ⁺ ²
≈ x⁶
Therefore, the answer should be: x⁶
Good luck on your assignment & enjoy your day!
~Amphitrite1040:)
hfjfjhfhcuhchcjhfhfhfuhdhdhdhhdhfhfhydydjcjcjfjjfjfu