1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
9

Find the measure of each interior angles of a regular hexagon show all work

Mathematics
1 answer:
Ivahew [28]3 years ago
8 0
The measure of the interior angles would be 120°, and they would all add up to be 720°
You might be interested in
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Can someone please help with #28?
Burka [1]
For this the aweswer is f
7 0
3 years ago
Determine the value of y for y=5x
Ilia_Sergeevich [38]
You just multiply the x value by 5
-2(5)=-10
-1(5)=-5
0(5)=0
3(5)=15
6(5)=30
9(5)=45
5 0
2 years ago
Read 2 more answers
What does this equal? 3(x+5)=7-x
True [87]
3(x+5)=7-x3x+15=7-x4x=-8x=-2
3 0
3 years ago
Read 2 more answers
Five minus 6 times a number is equal to -11 plus 2 times the number​
zepelin [54]

Answer:

No its not equal

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Tge ratio of boys to girls is 3 to 2 .if there are 12 boys how many girls are there
    8·1 answer
  • A car traveled 3⁄4 mile in one minute at constant speed. What was the speed of the car in miles per hour?
    9·1 answer
  • Rory is driving 584 miles to a family reunion. She will drive half of the distance by herself the first day. The second day, Ror
    6·1 answer
  • A rectangular prism has a length of 1 1/4 centimeters, a width of 4 centimeters, and a height of 3 1/4 centimeters. What is the
    14·1 answer
  • Simplify. 3x(2x + 4y)
    6·1 answer
  • ABCD is a parallelogram, find the value of y
    11·1 answer
  • SHOW WORK I’ll mark you brainlist
    15·1 answer
  • Need help what is the correct answer for this problem. I WILL MARK BRAINLIEST!!
    14·2 answers
  • Help me, please! I'll give a brainlist point! :)
    11·2 answers
  • Please solve this question ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!