1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
3 years ago
10

%2B%202cos%20%5C%3A%208a%7D%20%7D%20%7D%20" id="TexFormula1" title="m. \: 2cos \: a = \sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos \: 8a} } } " alt="m. \: 2cos \: a = \sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos \: 8a} } } " align="absmiddle" class="latex-formula">
please help me.....​
I need full work!!

Mathematics
2 answers:
klio [65]3 years ago
7 0

While this is with theta instead of A it still is the same thing. I hope this helps

timofeeve [1]3 years ago
7 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the following Double Angle Identity:

cos 2A = 2 cos²A - 1

<u>Proof RHS → LHS</u>

Given:                            \sqrt{2+\sqrt{2+\sqrt{2+2cos8A}}}

Factor:                           \sqrt{2+\sqrt{2+\sqrt{2(1+cos8A)}}}

Let α = 4A:                      \sqrt{2+\sqrt{2+\sqrt{2(1+cos2\alpha)}}}

Double Angle Identity:   \sqrt{2+\sqrt{2+\sqrt{2(1+2cos^2\alpha-1)}}}

Simplify:                            \sqrt{2+\sqrt{2+\sqrt{2(2cos^2\alpha)}}}

                                          \sqrt{2+\sqrt{2+2cos\alpha}}}

Substitute (α = 4A):           \sqrt{2+\sqrt{2+2cos4A}}}

Factor:                               \sqrt{2+\sqrt{2(1+cos4A)}}}

Let β = 2A                          \sqrt{2+\sqrt{2(1+cos2\beta)}}}

Double Angle Identity:     \sqrt{2+\sqrt{2(1+2cos^2\beta-1)}}}

Simplify:                             \sqrt{2+\sqrt{2(2cos^2\beta)}}}

                                          \sqrt{2+2cos\beta}

Substitute (β = 2A):            \sqrt{2+2cos2\alpha}

Factor:                                 \sqrt{2(1+cos2\alpha)}

Double Angle Identity:       \sqrt{2(1+2cos^2\alpha-1)}

Simplify:                               \sqrt{2(2cos^2A)}

                                             2 cos A

2cos A =  2cos A   \checkmark

You might be interested in
Six less than four times a number is 24<br> written out in numbers
vladimir1956 [14]
Your number is 0, 4x6=24 and six less than six is 0
3 0
4 years ago
Read 2 more answers
The sum of the components of anything equals the whole thing. Which property/postulate does this statement represent?
IgorC [24]
The property that is being described in the statement "The sum of the components of anything equals the whole thing" would be the Partition Postulate. It is simply the whole is equal to the sum of its parts. For instance we have a line where it contains points W, X, Y and Z, then WX + XY + YZ = WZ.
5 0
3 years ago
Is 1/4 to the 0 power bigger then 1
marishachu [46]

Answer:

yes it is

Step-by-step explanation:

anything took to zerk is zero, 1 is higher thsn zero

4 0
3 years ago
Read 2 more answers
5/8 divided by 1 1/3? In fraction form
Rom4ik [11]

Answer:

15/32

Step-by-step explanation:

3 0
3 years ago
The manager of a store wants to have a sales promotion where she gives prizes to the first several people through the door. She
Viktor [21]
The answer is 60 people. Each person would get <span>4 pins, 6 ornaments and 9 mugs.</span>
4 0
4 years ago
Read 2 more answers
Other questions:
  • Simplify <br> x + x + y x y<br> plz thx
    10·2 answers
  • 2x+4y=12
    7·2 answers
  • I need help asap can anybody help me
    14·2 answers
  • Label from least to greatest 1/3, 5/6, 1/8, 7/12
    10·1 answer
  • I’m confused on this one
    12·1 answer
  • Use long division to convert 36\75 to a decimal
    7·2 answers
  • Help! please!! (Math)
    6·2 answers
  • Please helpppp i will brainlisy anyone who helps
    10·1 answer
  • Determine the number of solutions, y=x+2 and x=-1
    14·1 answer
  • COS Find the quotient when the polynomial expression is divided by a binomial Find the quotient ANSWER SOLUTION CHOICES X2+11x+
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!