1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
joja [24]
3 years ago
7

In the game of euchre, the deck consists of the 9, 10, jack, queen, king and ace of each suit. players are dealt a five card han

d. what is the probability that a player is dealt 4 hearts
Mathematics
2 answers:
Oksana_A [137]3 years ago
8 0
0% because the deck only has 9s, 10s, jacks, queens, kings, and aces. There is no others cards accept those. So you cannot get a 4 of hearts because it’s not in the deck.
Debora [2.8K]3 years ago
8 0
There are 6 hearts in the 24 card deck. The probability that the first player who is dealt a 5 card hand gets 4 hearts is given by:
\frac{6C4\times18C1}{24C5}=0.00635
The answer is: 0.00635 or 0.635%

You might be interested in
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
2 years ago
Plastic parts produced by an injection-molding operation are checked for conformance to specifications. Each tool contains 12 ca
Ksju [112]

Answer:

a) 45 possible outcomes

b) 55 possible outcomes

Step-by-step explanation:

Given:

- Total cavities = 12

- Selection = 3 parts

- Non-conforming cavities = 2

Find:

a) How many samples contain exactly 1 nonconforming part?

b) How many samples contain at least 1 nonconforming part?

Solution:

- The question asks for the use of combinations to express the outcomes for each scenario.

- For first part, we want the inspector to pick exactly one non-conforming part among 3 selected. So let us say that he has already chosen that one non conforming cavity. Now he has to make 2 more selections out of total conforming cavities = 12 - 2 = 10 conforming cavities. Hence, the total possible outcome is to chose 2 randomly from 10 conforming cavities.

                              ( Exactly 1 ) 10C2 = 45 possible outcomes

- The second part entails that at-least 1 non-conforming cavity is selected. To choose exactly 1 non conforming we calculated above. In the similar way calculate for selecting exactly 2 non-conforming cavities. The total possible outcome would be to choose from 10 conforming and we choose 1 from it:

                              ( Exactly 2 ) 10C1 = 10 possible outcomes

- Hence, for at-least 1 non conforming cavity being selected we same the above two cases calculated:

                             (At-least 1 ) =  ( Exactly 1 ) +  ( Exactly 2 )

                             (At-least 1 ) =  45 + 10 = 55 possible outcomes

4 0
3 years ago
The range for the given domain of the function f(x)=3x-6/x+4.5 is
mash [69]
Hello,

We can not divide by 0.

==> x+4.5≠0
==>x≠-4.5

dom f=R\{4.5}
4 0
2 years ago
What is the experimental probability of a coin toss results in two heads showing?
lorasvet [3.4K]

Answer:

1 in 4 chance

25% chance

8 0
2 years ago
Read 2 more answers
If you shift the linear parent function, f(x) = x, down 6 units, what is the
Tpy6a [65]

Answer:

f(x) = x - 6

Step-by-step explanation:

The original function would go through (0,0) since you shift the function down 6 units, it will go through (0,-6)

so, the equation of the line would be f(x) = x - 6

3 0
2 years ago
Other questions:
  • I will give brainliest!!!!!!!!!
    5·2 answers
  • What tose by mean in mathematics?
    14·2 answers
  • HELP PLEASE. Find x &amp; y round answer to the nearest tenth!
    8·1 answer
  • A survey asked a group of students to choose their favorite type of snack. The results of the survey are shown in the graph. Bas
    6·2 answers
  • Let mu denote the true average number of minutes of a television commercial. Suppose the hypothesis H0: mu = 2.1 versus Ha: mu &
    9·1 answer
  • Converting a decimal to a mixed number and as a improper fraction, please help...
    15·1 answer
  • An employee works 6 hr. on Monday, 8 hr. on Tuesday, and 9 hr. on Wednesday and received a $51 bonus. What is his hourly pay rat
    5·2 answers
  • F(x)=−10x2−x and g(x)=−2x2−x, find (f−g)(x) and (f−g)(−2)
    7·1 answer
  • What expression equals 12 with exponent
    6·1 answer
  • Multiply.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!