1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
3 years ago
6

A tree factor for 451

Mathematics
2 answers:
AlexFokin [52]3 years ago
8 0
11, 41
Hope this helped 
Elanso [62]3 years ago
5 0
A tree factor for 451 is 1179912
You might be interested in
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
3 years ago
(14+42-6)/10+7^2 order of operation
Rainbow [258]

Answer:

54

Step-by-step explanation:

\dfrac{(14+42-6)}{10}+7^2

Parentheses (14 + 42 - 6) = 50:

⇒ 50/10 + 7²

Exponents 7² = 49:

⇒ 50/10 + 49

Multiplication/division  50/10 = 5:

⇒ 5 + 49

Addition/subtraction:  5 + 49 = 54

⇒ 54

6 0
2 years ago
How would you do this?
Goshia [24]

Using the formula y=200+50x, plug in x=1 to get y=250.


6 0
3 years ago
Need help ASAP <br> Thankss + BRAINLIST only for correct answer
Murrr4er [49]

Answer:

(2, 0)

Step-by-step explanation:

Given the simultaneous equation

2x-y = 4

3x+y = 6

Add both equation

2x+3x = 4 + 6

5x = 10

x = 10/5

x = 2

Substitute x = 2 into equation 1

From1 ;

2x-y = 4

2(2) - y = 4

4 - y = 4

y = 4-4

y = 0

Hence the solution to the system of equation is (2, 0)

3 0
2 years ago
A grain of sand with a diameter of
melisa1 [442]

Answer:

B) 0.0000000000003

Step-by-step explanation:

Hope this helps.

4 0
2 years ago
Other questions:
  • The lines below are parallel. If the slope of the green line is -4, what is the slope of the red line?
    6·1 answer
  • Surface area for a rectangular prism 43in 19in 35in
    14·1 answer
  • Multi-step equation: 4x+6+3=17
    5·1 answer
  • Can u help with these two
    13·2 answers
  • Find the exact area of the shaded region.
    7·1 answer
  • Help please! answer correctly for brainliest . ( look at picture for question and answer choices )
    10·2 answers
  • The value of [{(6to the power 2+8 to the power 2)to the power 1/2}]to the power 3​
    11·1 answer
  • 6 x 10 5 is how many times the value of 3 x 10 (Hint: Write your answer in standard form.)​
    8·1 answer
  • Simplify<br> (8^2)^3<br><br> I thought it was 8^5 of five but I might be wrong
    5·1 answer
  • Can you please tell me the answer
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!