Triangle QST is similar to triangle PQR
We are given that measure of angle SRP is 90°
Q is the point of the hypotenuse SP
Segment QR is perpendicular to PS and T is a point outside the triangle on the left of s
We need to find which triangle is similar to triangle PQR
So,
Using Angle - Angle - Angle Criterion We can say that
m∠PQR = m∠SQR (AAA similarity)
m∠SQR=m∠SQT (AAA similarity)
Where m∠Q =90° in ΔQST and PQR
Therefore ΔQST is similar to ΔPQR
Learn more about similarity of triangles here
brainly.com/question/24184322
#SPJ4
The answer to -16^-3/4 is -8
-3
When there are two negative be added your answer will always be negative. In this case add the ones(2) and then add the 1/2s(1) and then add the two. For this you’ll get 3 but just add the negative sign.
Answer:
k=2
Problem:
if the equation x^2 +(k+2)x+2k=0 has equal roots,then the value of k is ..
Step-by-step explanation:
Since the coefficient of x^2 is 1, we can use this identity to aid us: x^2+bx+(b/2)^2=(x+b/2)^2.
So we want the following:
[(k+2)/2]^2=2k
Apply the power on the left:
(k+2)^2/4=2k
Multiply both sides by 4:
(k+2)^2=8k
Expand left side:
k^2+4k+4=8k *I used identity (x+c)^2=x^2+2xc+c^2
Subtract 8k on both sides:
k^2-4k+4=0
Factor using the identity mentioned a couple lines above:
(k-2)^2=0
Since zero squared is zero, we want k-2=0.
Adding both sides by 2 gives k=2.