1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
4 years ago
10

The sum of two numbers is 60. The larger number is 18 more than the smaller number. What are the numbers?

Mathematics
1 answer:
ASHA 777 [7]4 years ago
6 0
The two numbers are 21 and 39
You might be interested in
Which of the following is not a correct name for the line shown?
Talja [164]

Answer:

D

Step-by-step explanation:

The line can be named with small latin letters or with two large latin letters which represent two points lying on the line.

Consider all options:

A. Points V and X lie on the line, so you can name the line as VX (true option)

B. Points W and X lie on the line, so you can name the line as WX (true option)

C. p represents the line (small letter given on the diagram) - (true option)

D. You cannot name the line using point V and line p, so this option is false

3 0
3 years ago
Read 2 more answers
Which postulate explains why a tripod will not tip over?
Feliz [49]
Tripod will not tip over because: a plane contains at least 3 noncollinear points .
Answer: B ) 
3 0
3 years ago
Read 2 more answers
Last one, use trigonometry to help you solve for y given that one side is 4 and there is an angle of 50 degrees.
Ostrovityanka [42]

Answer:

y = 6.22

You can solve this in two ways.

1.) Use SOH CAH TOA:

I typically start off by labeling the sides of the triangle with H (hypotenuse), O (opposite), and A (adjacent). Because I need to figure out what y is when given an angle and 4, I will use CAH, or cosine.

\cos(angle)  =  \frac{adjacent}{hypotenuse}

\cos(50)  =  \frac{4}{y}

\cos(50)  \times y = 4

y =  \frac{4}{ \cos(50) }

y = 6.22

2.) Use Law of Sines:

Solve for the last angle inside the triangle first.

180 - (50 + 90) = 40

Then use the angle you found (40°) in the equation.

\frac{4}{ \sin(40) }  =  \frac{y}{ \sin(90) }

\frac{4}{ \sin(40) }  \times  \sin(90)  = y

y = 6.22

3 0
3 years ago
Find the Nth term of this number sequnce<br> 7,10,13,16
Strike441 [17]

\text{It is an arithmetic series.}\\\\\text{First term,}~ a = 7\\\\\text{Common difference,}~ d=10 -7 = 3\\\\\text{Nth term} = a + (n -1) d\\\\~~~~~~~~~~~~~=7+(n-1)3\\\\~~~~~~~~~~~~~=7+3n-3\\\\~~~~~~~~~~~~~=4+3n

3 0
3 years ago
Question in pictures
yan [13]

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

7 0
2 years ago
Other questions:
  • Which of the following are exterior angles in the figure below?
    10·2 answers
  • What is the solution of the system? Use substitution.
    10·1 answer
  • How do you get the answer for 2/3 x 5=
    15·2 answers
  • What is the ratio for the ​
    15·1 answer
  • Hi! I need help with some math questions. Not problems though, I’ll show what I mean.
    5·2 answers
  • An airplane is flying at a speed of 580 km/h on a bearing of North 60° east. The wind blows from a bearing of North 45° west at
    13·1 answer
  • What is the area of this figure! Pls help!
    8·1 answer
  • Cecilia owns just as many cats as she does birds. If her pets have a total of 18 legs, how many cats does she own?
    12·2 answers
  • Find the x and y intercepts for the following. X= -(y-1) ^2-2
    7·1 answer
  • Okie help help math math math
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!