1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
3 years ago
10

Write an expression with four terms. Include at least one term with an exponent, one term with a coefficient of 5, one term with

three factors, and one constant. Make two of the terms like terms.
Mathematics
1 answer:
Leokris [45]3 years ago
8 0
An algebraic expression is looking something like this: 8x³ + 5
This expression has two terms; 8x³ and 5
The value of '8' in 8x³ is called COEFFICIENT
The value of '3' in 8x³ is called POWER or INDICES
The term 8x³ is called  an exponent because it has power/indices
The letter 'x' in the term 8x³ is called VARIABLE

So, we want an expression with four terms
_____ ⁺/₋ _____ ⁺/₋ _____ ⁺/₋ _____

One term with an exponent ⇒ You can choose any letter and any power that will go with it, for example, 6x⁴

One term with a coefficient of 5 ⇒ 5x⁴

One term with three factors ⇒ This could be a combination of any three letters that represent three values for example 'abc'. This term means a × b × c, so it has three factors.

One constant ⇒ Choose any number, say 45

Make two of the terms like terms ⇒ We have 6x⁴ + 5x⁴; these two terms are alike, they are in term of x⁴

Putting the four terms together: 6x⁴ + 5x⁴ + abc + 45
You might be interested in
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
I BET YOU CANT SOLVE THIS...
e-lub [12.9K]
The answer is 61 7/20
8 0
3 years ago
A restaurant is offering a dinner special that includes one starter and one entree. The choices are listed below. Starter: bread
artcher [175]

Answer:

There are 15 combinations.

Step-by-step explanation:

A restaurant is offering a dinner special that includes one starter and one entree.

Starter: bread-sticks, soup, salad

Entree: beef, fish, chicken, shrimp, pork

So, we have 3 starters and 5 entrees.

To know the possible dinner special combinations we will simply multiply the two.

3\times5=15

Therefore, there are 15 combinations.

8 0
2 years ago
Read 2 more answers
the angle θ is 7.2 degrees, and the circle arc s is 800 km. knowing that there are 360 degrees in a full circle what is the circ
kumpel [21]

The earth is 40000 kilometers around. There is no need to round off because the circumference already contains significant figures.

How do I calculate a circle's circumference?

A circle's diameter is multiplied by to determine its circumference (pi). You can also determine the circumference by multiplying 2radius by pi (=3.14).

Given: theta angle (central) = 7.2°; arc length S = 800 km

This indicates that an 800 km long arc is extending a circle with a 7.2° center angle ( earth in this case).

By definition, "An arc's length is a portion of a circle's diameter."

Therefore, we must first establish what percentage of the circle the specified arc length represents.

360° is a complete circle.

Thus, the fraction equals 7.2°/360°, or 1/50.

As a result, the stated arc length (800km) with a 7.2° central angle is 1/50th of the entire circle.

Thus, the whole circumference is 800 x 50, or 40000 km.

Alternately, you can calculate circumference using the formula below:

360° center angle x arc length as the circumference (theta)

Values substituted: circumference 800 = 360° 7.2°

circumference = 360°, 800°, and 7.2°, or 40000 kilometers

Therefore, the earth is 40000 kilometers around. There is no need to round off because the circumference already contains significant figures.

Learn more about Circumference

brainly.com/question/27447563

#SPJ4

4 0
1 year ago
Find the slope of line passing through {-7,-6} and {5, -6}
suter [353]

Answer:

slope=(y2-y1)/(x2-x1)

where (x1,y1)=(-7,-6)

(X2,y2)=(5,-6)

slope=(-6+6)/(5+7)=0

6 0
2 years ago
Other questions:
  • An interior angle of a regular polygon has a measure of 108. What type of polygon is it?
    15·2 answers
  • What is 20% of 100 in whole money
    7·2 answers
  • A snack cart sells lemonade for $2 and hot dogs for $5. The vendor sold 86 items today for a total of $330. Which equation is tr
    15·2 answers
  • What is another way to express 52+24
    5·2 answers
  • Determine whether the alternating series E (-1)^n+1 (n/8)^n converges or diverges. Choose the correct answer below​ and, if​ nec
    12·1 answer
  • PET HOSPITAL The circle graph shows the types of pets treated at a pet hospital.
    11·1 answer
  • Solve the equation<br> -7=y/7
    10·1 answer
  • On the last day of the school book fair, all pencils were one set price and all books were a different set price. Sammy bought 2
    12·1 answer
  • In the figure below, j || h. Find the values of x and y.
    11·1 answer
  • PLEASE FAST IMAGE BELOW REAL ANSWERS PLEASE ||
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!