Answer:
30.4
Step-by-step explanation:
if you want the basic perimeter just add up all the sides
Answer:
See attached
Step-by-step explanation:
The answers added on the picture
Answer:
Part 1) 
Part 2) 
Part 3) 
Part 4) 
Part 5) 
Step-by-step explanation:
Part 1) we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal
so
In this problem

Part 2) we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal
so
In this problem

Part 3) we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal
so
In this problem

substitute the values





Part 4) we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal
so
In this problem

Part 5) we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal
so
In this problem

Answer:
35 different routes
Step-by-step explanation:
The problem of how many different routes are possible if a driver wants to make deliveries at 4 locations among 7 locations is a combination problem.
Combination problems are usually selection problems, of all or part of a set of options, without considering the order in which options are selected.
The number of combinations of n objects taken r at a time is: ⁿCᵣ
So, the number of ways the driver can make deliveries at 4 locations out of 7 locations of given by
⁷C₄ = 35 different ways.
Hence, 35 different routes are possible to make deliveries at 4 locations out of 7 locations.
Hope this Helps!!!
Answer:
BC = 7.
Step-by-step explanation:
subtract 12 inches from 19 and then you get the result for BC.