Answer:
0.92 and 1.25 respectively
Step-by-step explanation:
0.92 and 1.25 respectively
first the mean of each value which is 9.7 and 9.8 respectively
standard deviation = square root of the mean deviation of each value
then deduct the mean from each element
and square each value and add them together. not you should square each deviation value before you add them
at last divide the result by the number of frequency and find it's square root
Standard quadratic equation .. y = a x^2 + b x + c
<span>parabola 'a' not equal to zero </span>
<span>a<0 parabola opens downward </span>
<span>a>0 parabola opens upward </span>
<span>when |a| >>0 the parabola is narrower </span>
<span>when |a| is close to zero , the parabola is flatter </span>
<span>when the constant is varied it only effects the vertical position of the parabola , the shape remains the same</span>
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
<h2>Key Ideas</h2>
<h2>Solving the Question</h2>
When both sides of the equal sign are equal, there are infinite solutions.
When you are able to isolate the variable, there is only one solution.
When the equation states an untrue expression, there is no solution.
1=3 is an untrue fact. Therefore, there would be no solutions to the system.
<h2>Answer</h2>
There is no solution
I believe it's 199,000 to the nearest 1,000 and
200,000 to the nearest 10,000