cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
omg there is a bot?? why does it send a virus and how??
The mean is every number added, then divided by the amount of numbers. range is the number that occurred most often. What does that get you?
If 48 = 8 than 12 = x
to find x divide 48 by 8 which is 6. every 6 feet of fabric 1 blanket is made
so 12/6 equals 2
2 blankets can be made from 12 feet of fabric
Answer: Identify which of the following functions are eigenfunctions of the operator d/dx: (a) eikx, (b) cos kx, (c) k, (d) kx, (e) e−ax2
Step-by-step explanation: First, we going to apply the operator derivate to each item. Remember that a function f is an eigenfunction of D if it satisfies the equation
Df=λf, where λ is a scalar.
a) D(eikx)/dx= ik*eikx, then the function is a eigenfunction and the eingenvalue is ik.
b) D(cos kx)/dx= -ksen kx, then the funcion is not a eigenfunction.
c) D(k)/dx=0, then the funcion is not a eigenfunction.
d) D(kx)/dx=k, then the funcion is not a eigenfunction.
e) D(e-ax2)/dx= -2ax*e-ax2, then the function is a eigenfunction and the eingenvalue is -2ax