<h3>
Answer: f( f(x) ) = x^4 + 2x^2 + 2</h3>
=============================================
Work Shown:
f(x) = x^2 + 1
f(x) = ( x )^2 + 1
f( f(x) ) = ( f(x) )^2 + 1 .. replace every x with f(x)
f( f(x) ) = ( x^2+1 )^2 + 1 .. plug in f(x) = x^2+1
f( f(x) ) = ( x^2+1 )( x^2+1 )+1
f( f(x) ) = y( x^2+1 )+1 .... let y = f(x) = x^2+1
f( f(x) ) = y*x^2+y+1 ... distribute
f( f(x) ) = x^2*( y ) + ( y ) + 1
f( f(x) ) = x^2*( x^2+1 ) + (x^2+1) + 1 .... plug in y = x^2+1
f( f(x) ) = x^4 + x^2 + x^2 + 1 + 1
f( f(x) ) = x^4 + 2x^2 + 2
--------------------------------------
Side note:
, the small circle indicates function composition. It's similar to 
Answer:
The answer is -1
Step-by-step explanation:
Answer:
As radius is perpendicular to tangent,
By pythagoras theorem :
x² = (x + 9)² - 15²
x² = x² + 18x + 81 - 225
18x = 207
x = 11.5