Answer:
b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.
Explanation:
The solubility of NaCH₃CO₂ in water is ~1.23 g/mL. This means that at room temperature, we can dissolve 1.23 g of solute in 1 mL of water (solvent).
<em>What would be the best method for preparing a supersaturated NaCH₃CO₂ solution?</em>
<em>a) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at room temperature while stirring until all the solid dissolves.</em> NO. At room temperature, in 100 mL of H₂O can only be dissolved 123 g of solute. If we add 130 g of solute, 123 g will dissolve and the rest (7 g) will precipitate. The resulting solution will be saturated.
<em>b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. </em>YES. The solubility of NaCH₃CO₂ at 80 °C is ~1.50g/mL. If we add 130 g of solute at 80 °C and let it slowly cool (and without any perturbation), the resulting solution at room temperature will be supersaturated.
<em>c) add 1.23 g of NaCH₃CO₂ to 200 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.</em> NO. If we add 1.23 g of solute to 200 mL of water, the resulting solution will have a concentration of 1.23 g/200 mL = 0.00615 g/mL, which represents an unsaturated solution.
Similar chemical properties
(OPTION C)
The use of cold methanol is important because it is used to recrystallize or solidify the product.
Since, ice bath is also used in nitration of methyl benzoate because in this reaction the concentrated acid like sulfuric acid is used with water and it is very exothermic.
The formation pure solid from the impure solid compound by mixing with hot solvent and form saturated solution. Now, this solution as cools and pure crystal grows when solubility of the compound decreases. This whole process is called re-crystallization.
learn about re-crystallization
brainly.com/question/14918321
#SPJ4
1. Ionic compounds are formed by the transfer of electrons that are positively and negatively charged, whereas, covalent compounds are formed by sharing the electrons. 2. In an ionic compound, bonding involves a metal and nonmetal, whereas, in the covalent compound, bonding is between nonmetals.
Answer:
b) 3.000 mol S
Explanation:
using Avogadro's constant
1 mol = 6.02 × 10^23 atoms
we need to find the number of moles for 1.806 × 10^24
x = 1.806 × 10^24
putting it together we now have:
1 mol = 6.02 × 10^23 atoms
x = 1.806 × 10^24
cross multiply
6.02 × 10^23 x = 1.806 × 10^24
divide both sides by 6.02 × 10^23
x = (1.806 × 10^24) ÷ (6.02 × 10^23) = 3 mol