Answer: m = 0
Step-by-step explanation:
Slope (m) = y2 - y1/,x2 - x1 : meaning increase in y divided by increase in x . it can also be written as ∆y/∆x
y1= 1, y2 = 1, x1 = 7, x2 = -2
Substitute for those values in the equation above
m = 1 -1/-2 - 7
= 0/-9
Therefore,
m = 0
The slope of the line passing through those coordinates = 0
The GCF (Greatest Common Factor) is 6a.
Which of the following are perfect squares? 2, 4, 6, 16, 20,25, x², x³, x¹⁵, x²⁰, x²⁵
coldgirl [10]
Answer:
4, 16, 25,
,
.
Step-by-step explanation:
Use the power, product, and chain rules:
![y = x^2 (3x-1)^3](https://tex.z-dn.net/?f=y%20%3D%20x%5E2%20%283x-1%29%5E3)
• product rule
![\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{\mathrm d(x^2)}{\mathrm dx}\times(3x-1)^3 + x^2\times\dfrac{\mathrm d(3x-1)^3}{\mathrm dx}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20%5Cdfrac%7B%5Cmathrm%20d%28x%5E2%29%7D%7B%5Cmathrm%20dx%7D%5Ctimes%283x-1%29%5E3%20%2B%20x%5E2%5Ctimes%5Cdfrac%7B%5Cmathrm%20d%283x-1%29%5E3%7D%7B%5Cmathrm%20dx%7D)
• power rule for the first term, and power/chain rules for the second term:
![\dfrac{\mathrm dy}{\mathrm dx} = 2x\times(3x-1)^3 + x^2\times3(x-1)^2\times\dfrac{\mathrm d(3x-1)}{\mathrm dx}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%202x%5Ctimes%283x-1%29%5E3%20%2B%20x%5E2%5Ctimes3%28x-1%29%5E2%5Ctimes%5Cdfrac%7B%5Cmathrm%20d%283x-1%29%7D%7B%5Cmathrm%20dx%7D)
• power rule
![\dfrac{\mathrm dy}{\mathrm dx} = 2x\times(3x-1)^3 + x^2\times3(3x-1)^2\times3](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%202x%5Ctimes%283x-1%29%5E3%20%2B%20x%5E2%5Ctimes3%283x-1%29%5E2%5Ctimes3)
Now simplify.
![\dfrac{\mathrm dy}{\mathrm dx} = 2x(3x-1)^3 + 9x^2(3x-1)^2 \\\\ \dfrac{\mathrm dy}{\mathrm dx} = x(3x-1)^2 \times (2(3x-1) + 9x) \\\\ \boxed{\dfrac{\mathrm dy}{\mathrm dx} = x(3x-1)^2(15x-2)}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%202x%283x-1%29%5E3%20%2B%209x%5E2%283x-1%29%5E2%20%5C%5C%5C%5C%20%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20x%283x-1%29%5E2%20%5Ctimes%20%282%283x-1%29%20%2B%209x%29%20%5C%5C%5C%5C%20%5Cboxed%7B%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20x%283x-1%29%5E2%2815x-2%29%7D%20)
You could also use logarithmic differentiation, which involves taking logarithms of both sides and differentiating with the chain rule.
On the right side, the logarithm of a product can be expanded as a sum of logarithms. Then use other properties of logarithms to simplify
![\ln(y) = \ln\left(x^2(3x-1)^3\right) \\\\ \ln(y) = \ln\left(x^2\right) + \ln\left((3x-1)^3\right) \\\\ \ln(y) = 2\ln(x) + 3\ln(3x-1)](https://tex.z-dn.net/?f=%5Cln%28y%29%20%3D%20%5Cln%5Cleft%28x%5E2%283x-1%29%5E3%5Cright%29%20%5C%5C%5C%5C%20%5Cln%28y%29%20%3D%20%20%5Cln%5Cleft%28x%5E2%5Cright%29%20%2B%20%5Cln%5Cleft%28%283x-1%29%5E3%5Cright%29%20%5C%5C%5C%5C%20%5Cln%28y%29%20%3D%202%5Cln%28x%29%20%2B%203%5Cln%283x-1%29)
Differentiate both sides and you end up with the same derivative:
![\dfrac1y\dfrac{\mathrm dy}{\mathrm dx} = \dfrac2x + \dfrac9{3x-1} \\\\ \dfrac1y\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{15x-2}{x(3x-1)} \\\\ \dfrac{\mathrm dy}{\mathrm dx} = \dfrac{15x-2}{x(3x-1)} \times x^2(3x-1)^3 \\\\ \dfrac{\mathrm dy}{\mathrm dx} = x(15x-2)(3x-1)^2](https://tex.z-dn.net/?f=%5Cdfrac1y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20%5Cdfrac2x%20%2B%20%5Cdfrac9%7B3x-1%7D%20%5C%5C%5C%5C%20%5Cdfrac1y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20%5Cdfrac%7B15x-2%7D%7Bx%283x-1%29%7D%20%5C%5C%5C%5C%20%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20%5Cdfrac%7B15x-2%7D%7Bx%283x-1%29%7D%20%5Ctimes%20x%5E2%283x-1%29%5E3%20%5C%5C%5C%5C%20%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%20%3D%20x%2815x-2%29%283x-1%29%5E2)
Kevin installed a certain brand of automatic garage door opener that utilizes a transmitter control with four independent switches, each one set on or off. The receiver (wired to the door) must be set with the same pattern as the transmitter. If six neighbors with the same type of opener set their switches independently.<u>The probability of at least one pair of neighbors using the same settings is 0.65633</u>
Step-by-step explanation:
<u>Step 1</u>
In the question it is given that
Automatic garage door opener utilizes a transmitter control with four independent switches
<u>So .the number of Combinations possible with the Transmitters </u>=
2*2*2*2= 16
<u>
Step 2</u>
Probability of at least one pair of neighbors using the same settings = 1- Probability of All Neighbors using different settings.
= 1- 16*15*14*13*12*11/(16^6)
<u>
Step 3</u>
Probability of at least one pair of neighbors using the same settings=
= 1- 0.343666
<u>
Step 4</u>
<u>So the probability of at least </u>one pair of neighbors using the same settings
is 0.65633