Answer:
Answers are below!
Step-by-step explanation:
(2 + g) (8)
= (2 + g) (8)
Add a 8 after the 2, and flip.
= (2)(8) + (g)(8)
= 16 + 8g
= 8g + 16
= (4) (8 + -5g)
Add another 4, then flip.
= (4) (8) + (4) (-5g)
= 32 − 20g
= - 20g + 32
−7 (5-n)
= (−7) (5 + -n)
Add another 7, then flip.
= (−7) (5) + (-7) (-n)
= −35 + 7n
= 7n - 35
Use the distributive property.
a (b + c) = ab + ac
a = 8
b = 2m
c = 1
= 8 × 2m + 8 × 1
Simplify, you get 16m + 8.
Use the distributive property.
a (b + c) = ab + ac
a = 6x
b = y
c = z
= 6xy - 6xz is the answer.



Apply minus plus rules.

Multiply the numbers.
3 x 2 = 6
no because it is not a right angled triangle.
this means angle A is not 90° so AB cant be a tangent.
Answer:
all positive inegers
Step-by-step explanation:
Answer:
D = L/k
Step-by-step explanation:
Since A represents the amount of litter present in grams per square meter as a function of time in years, the net rate of litter present is
dA/dt = in flow - out flow
Since litter falls at a constant rate of L grams per square meter per year, in flow = L
Since litter decays at a constant proportional rate of k per year, the total amount of litter decay per square meter per year is A × k = Ak = out flow
So,
dA/dt = in flow - out flow
dA/dt = L - Ak
Separating the variables, we have
dA/(L - Ak) = dt
Integrating, we have
∫-kdA/-k(L - Ak) = ∫dt
1/k∫-kdA/(L - Ak) = ∫dt
1/k㏑(L - Ak) = t + C
㏑(L - Ak) = kt + kC
㏑(L - Ak) = kt + C' (C' = kC)
taking exponents of both sides, we have

When t = 0, A(0) = 0 (since the forest floor is initially clear)


So, D = R - A =

when t = 0(at initial time), the initial value of D =
