Rewrite the equations of the given boundary lines:
<em>y</em> = -<em>x</em> + 1 ==> <em>x</em> + <em>y</em> = 1
<em>y</em> = -<em>x</em> + 4 ==> <em>x</em> + <em>y</em> = 4
<em>y</em> = 2<em>x</em> + 2 ==> -2<em>x</em> + <em>y</em> = 2
<em>y</em> = 2<em>x</em> + 5 ==> -2<em>x</em> + <em>y</em> = 5
This tells us the parallelogram in the <em>x</em>-<em>y</em> plane corresponds to the rectangle in the <em>u</em>-<em>v</em> plane with 1 ≤ <em>u</em> ≤ 4 and 2 ≤ <em>v</em> ≤ 5.
Compute the Jacobian determinant for this change of coordinates:

Rewrite the integrand:

The integral is then

Answer:
If a, b and c are in arithmetic progression, that means that a + c = 2b. So a + b, a + c and b + c are also in arithmetic progression.
This might help.
X=44°
you write 2x-6=82, subtract 6 on both sides so ur left with 2x=88, you divide both sides by 2 and you get 44
I’m sorry I don’t know but I need the points:(
Y intercept - 0.4
x intercept- 0.3