Answer:
<h2>64x³ - 432x² + 972x - 729</h2>
Step-by-step explanation:
Write the statement into an expression
<h2>(4x - 9)³</h2><h2 /><h3>Now multiply that out...</h3><h3 /><h3>(4x - 9)²(4x - 9)</h3><h3 /><h3> Foil the first binomial</h3><h3 /><h3> (16x² - 72x + 81)(4x - 9)</h3><h3 /><h3>Multiply the two polynomials together</h3><h3 /><h3> 16x²(4x) - 72x(4x) + 81(4x) + 16x²(-9) - 72x(-9) + 81(-9)</h3><h3 /><h3> 64x³ - 288x² + 324x - 144x² + 648x - 729</h3><h3 /><h3>combine like terms...</h3><h3 /><h3>64x³ - 432x² + 972x - 729</h3>
<span>How to use base 10 blocks in
dividing 2.16 by 6
=> how many 6s are there in 2.16. Let’s try
let’s try the blocks of
=> 1 = IIIIIIIIIIIIIIIII = 17 6s (16.666..
* 6)
=> 2 = approximately 33 6s (33.33… * 6)
=> .16 = 0.27 6s or 3
=> 33 + 3 = 36 6s in 2.16
=> 2.16 / 6 = 0.36
Thus, there are 36 6s in 2.16 numbers. </span>
Answer:
![\displaystyle Yes \\ Range: Set-Builder\:Notation → [f(x)|-2 ≤ f(x) ≤ 4] \\ Interval\:Notation → [-2, 4] \\ \\ Domain: Set-Builder\:Notation → [x|0 ≤ x ≤ 7] \\ Interval\:Notation → [0, 7]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Yes%20%5C%5C%20Range%3A%20Set-Builder%5C%3ANotation%20%E2%86%92%20%5Bf%28x%29%7C-2%20%E2%89%A4%20f%28x%29%20%E2%89%A4%204%5D%20%5C%5C%20Interval%5C%3ANotation%20%E2%86%92%20%5B-2%2C%204%5D%20%5C%5C%20%5C%5C%20Domain%3A%20Set-Builder%5C%3ANotation%20%E2%86%92%20%5Bx%7C0%20%E2%89%A4%20x%20%E2%89%A4%207%5D%20%5C%5C%20Interval%5C%3ANotation%20%E2%86%92%20%5B0%2C%207%5D)
Step-by-step explanation:
Just by looking at the graph vertically and horisontally, you can tell what the range and domain is, depending on whether the segments are <em>closed</em> or <em>opened</em>.
* This is a function because it passes the <em>vertical</em><em> </em><em>line test</em>.
** This is kind of like a sine wave.
I am joyous to assist you anytime.
Answer:
623168
Step-by-step explanation:
749x832=623168
Answer:
y= -28
Step-by-step explanation:
x -y = 11
if x= -17 then substitute x for -17
-17 -y = 11; add 17 to both sides
-17 + 17 -y = 11+ 17; combine like terms
-y = 28; multiply both sides by -1
y= -28