It is given in the question that
Point N(7, 4) is translated 5 units up.
And we have to find the coordinates of its image after this transformation.
Since the point translated up by 5 units, so the x coordinate remains same and we have to add 5 to y coordinate.
So the new coordinate after the transformation is

And that's the required coordinate after the given transformation .
The first choice.
The equation of this first line is -2, and since there is an open circle, it is not equal to -3.
The equation of the second line is -x-2, and there is a closed circle, so it includes -3
Answer:
The surface of the prism is 84m²
Step-by-step explanation:
You have 4 figures here (two the same triangles)
you need to determine the surface of each and then sum it to one. This will be your final surface.
rectangles:
3*6= 18m²
5*6 = 30m²
4*6 = 24m²
triangles:
You need to determine the square of the triangles from the Heron's formula.
Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
,
where s is the semi-perimeter of the triangle; that is,
.
So the permimeter of the triangle is
2p=4+5+3 = 12m
p = 6m
![S = \sqrt{p*(p-a)*(p-b)*(p-c)} = \sqrt{6*(6-3)*(6-4)*(6-5)} = \sqrt{6*3*2*1} =\sqrt{36} =6[m^{2} ]](https://tex.z-dn.net/?f=S%20%3D%20%5Csqrt%7Bp%2A%28p-a%29%2A%28p-b%29%2A%28p-c%29%7D%20%20%3D%20%5Csqrt%7B6%2A%286-3%29%2A%286-4%29%2A%286-5%29%7D%20%20%3D%20%5Csqrt%7B6%2A3%2A2%2A1%7D%20%3D%5Csqrt%7B36%7D%20%3D6%5Bm%5E%7B2%7D%20%5D)
So the surface of the prism is a total sum of all surfaces:
P = 18m²+30m²+ 24m²+2*6m² = 84m²
Combine like terms Finding the next equation