Answer:
The interval that describes how long it takes for passengers to board the middle 95% of the time is between 40.16 minutes and 55.84 minutes.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
.
Which interval describes how long it takes for passengers to board the middle 95% of the time?
This is between the 2.5th percentile and the 97.5th percentile.
So this interval is the value of X when Z has a a pvalue of 0.025 and the value of X when Z has a pvalue of 0.975
Lower Limit
Z has a pvalue of 0.025 when
. So




Upper Limit
Z has a pvalue of 0.975 when
. So




The interval that describes how long it takes for passengers to board the middle 95% of the time is between 40.16 minutes and 55.84 minutes.
The triangle pay $32 more for that day than it paid per day during the first period of time.
Step-by-step explanation:
The given is,
Triangle Construction pays Square Insurance $5,980
To insure a construction site for 92 days
To extend the insurance beyond the 92 days costs $97 per day
Triangle extends the insurance by 1 day
Step:1
Insurance per day from the 92 days period,

Where, Total insurance for 92 days = $ 5,980
Period = 92 days
From the values, equation becomes,

= $ 65 per day
Step:2
Insurance per day after the 92 days,
= $ 97
Amount Pay for that day than it paid per day during the first period of time,

= $32
Result:
The triangle pay $32 more for that day than it paid per day during the first period of time, if the Triangle Construction pays Square Insurance $5,980
to insure a construction site for 92 days and to extend the insurance beyond the 92 days costs $97 per day.
Answer:
Step-by-step explanation:
It would be more obvious if it says z is a standard Normal variable and that the question is related to statistics.
From "Computing Probabilities Using the Cumulative Table" , the probability of z is less than 1.16, P(z<1.16) = 0.8770.