Step-by-step explanation:
Given that,
a)
X ~ Bernoulli
and Y ~ Bernoulli 
X + Y = Z
The possible value for Z are Z = 0 when X = 0 and Y = 0
and Z = 1 when X = 0 and Y = 1 or when X = 1 and Y = 0
If X and Y can not be both equal to 1 , then the probability mass function of the random variable Z takes on the value of 0 for any value of Z other than 0 and 1,
Therefore Z is a Bernoulli random variable
b)
If X and Y can not be both equal to 1
then,
or 
and 

c)
If both X = 1 and Y = 1 then Z = 2
The possible values of the random variable Z are 0, 1 and 2.
since a Bernoulli variable should be take on only values 0 and 1 the random variable Z does not have Bernoulli distribution
The answer to the question is B
<h2>
Answer with explanation:</h2>
By considering the given information, we have
Null hypothesis : 
Alternative hypothesis : 
Since the alternative hypothesis is two-tailed , so the test is a two-tailed test.
Given : Sample size : n= 20, since sample size is less than 30 so the test applied is a t-test.
; 
Test statistic : 
i.e. 
Degree of freedom : n-1 = 20-1=19
Significance level = 0.01
For two tailed, Significance level 
By using the t-distribution table, the critical value of t =
Since , the observed t-value (7.25) is greater than the critical value (2.861) .
So we reject the null hypothesis, it means we have enough evidence to support the alternative hypothesis.
We conclude that there is some significance difference between the mean score for sober women and 35.0.
Answer:
15
Step-by-step explanation: