1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ostrovityanka [42]
4 years ago
13

An isosceles triangle is inscribed in a circle with a radius of 16cm. If the base of the triangle is the diameter of the circle

what is the area
Mathematics
1 answer:
DanielleElmas [232]4 years ago
6 0

Answer:w34j[o,6ujy npr'bjohbm]


Step-by-step explanation:

eroy7ke567uytre3456yu

You might be interested in
Helppppppppppppppppppppppp
Hatshy [7]

Answer:

b.........................

3 0
3 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
How to find the slope and y-intercept using a graph??????????
svlad2 [7]
The y-intercept is where on the graph the line is intersecting the y=axis. Slope is in the form y=mx+b  (b=y-intercept, mx=how far up and over.)
6 0
3 years ago
Read 2 more answers
U.S cities hire about 17,000 police officers per 10,000 residents for a 17/10,000 ratio a new police chief for a city of 35,000
mina [271]

Answer: 59,500

Step-by-step explanation:

Given

For 10,000 residents, 17,000 police officers are hired

The ratio of Police officers and citizens is constant

So, for 35,000 citizens suppose x officers are hired

\Rightarrow \dfrac{17,000}{10,000}=\dfrac{x}{35,000}\\\\\Rightarrow x=1.7\times 35,000\\\\\Rightarrow x=59,500

Thus, 59,500 officers are required.

8 0
3 years ago
Pls help me out with this question​
Nezavi [6.7K]

Answer:

83 m  (nearest metre)

Step-by-step explanation:

This can be modeled as a <u>right triangle</u>, where the base is 60 m and the height is the height of the building.

<u>Alternate Interior Angles Theorem (Z-angles)</u>

If a line intersects a set of parallel lines in the same plane at two distinct points, the alternate interior angles that are formed are congruent.

Using the Alternate Interior Angles theorem, the angle between the ground and the dashed line (angle of elevation) is 54°.

<u>Tan trigonometric ratio</u>

\sf \tan(\theta)=\dfrac{O}{A}

where:

  • \theta is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Given:

  • \theta = 54°
  • O = height of building (h)
  • A = 60

Substituting the given values into the formula and solving for h:

\implies \sf \tan(54^{\circ})=\dfrac{h}{60}

\implies \sf h=60 \tan(54^{\circ})

\implies \sf h=82.58291523...

\implies \sf h=83\:\:m\:(nearest\:metre)

7 0
2 years ago
Read 2 more answers
Other questions:
  • Find the horizontal or oblique asymptote of f(x) = negative 2 x squared plus 3 x plus 6, all over x plus 2 .
    5·2 answers
  • Each side of a square plastic tarp is 9 meters long. what is the tarps perimeter
    6·1 answer
  • Gerhard deposited $5600 into a savings account that earns 4.5% simple interest each year calculated annually. What is the future
    7·2 answers
  • María compra dos elotes y tres refrescos y por lo que paga $48 y Luis a comprar un elote y dos refrescos y pagó $24 cuánto cuest
    5·1 answer
  • PLS HELP ME GEOMETRY <br> I got 180 and 270 and both were incorrect
    10·1 answer
  • How do I solve this equation and check the solutions?
    6·2 answers
  • Divide R2<br>848 in the ratio 3:5.​
    5·2 answers
  • Solve the following equation for d.<br><br> m+1/6rd = 7
    11·1 answer
  • Y = 3 tan(x2 + 5) [using Chain Rule]​
    12·1 answer
  • Write as the opposite of a square root <br> -2√3<br> -3√5<br> -7√a<br> -0.2√b
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!