<h3>(cos (3π/12) + i sin (3π/12))⁵ = (cos (15π/12) + i sin (15π/12))</h3>
<h3>Further explanation</h3>
There are many types of numbers in mathematics such as :
- Natural Numbers : 1 , 2 , 3 , 4 , 5 , . . .
- Whole Numbers : 0 , 1 , 2 , 3 , 5 , . . .
- Integers : . . . , - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 , . . .
- etc
Complex Number consist of Real Number and Imaginary Number and can be expressed as :

The absolute value of complex number is also called Modulus and can be calculated using this formula :

Let us tackle the problem.
De Moivre's formula for complex numbers is as follows :
![\large {\boxed {[r( \cos \theta + i\sin \theta)]^n = r^n(\cos n\theta + i\sin n\theta)} }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Br%28%20%5Ccos%20%5Ctheta%20%2B%20i%5Csin%20%5Ctheta%29%5D%5En%20%3D%20r%5En%28%5Ccos%20n%5Ctheta%20%2B%20i%5Csin%20n%5Ctheta%29%7D%20%7D)
Using the formula above, we can solve the problem in the following way
![[\cos (\frac{3 \pi}{12}) + i\sin (\frac{3 \pi}{12})]^5 = \cos (5 \times \frac{3 \pi}{12}) + i\sin (5 \times \frac{3 \pi}{12})](https://tex.z-dn.net/?f=%5B%5Ccos%20%28%5Cfrac%7B3%20%5Cpi%7D%7B12%7D%29%20%2B%20i%5Csin%20%28%5Cfrac%7B3%20%5Cpi%7D%7B12%7D%29%5D%5E5%20%3D%20%5Ccos%20%285%20%5Ctimes%20%5Cfrac%7B3%20%5Cpi%7D%7B12%7D%29%20%2B%20i%5Csin%20%285%20%5Ctimes%20%5Cfrac%7B3%20%5Cpi%7D%7B12%7D%29)
![\large {\boxed {[\cos (\frac{3 \pi}{12}) + i\sin (\frac{3 \pi}{12})]^5 = \cos (\frac{15 \pi}{12}) + i\sin (\frac{15 \pi}{12})}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5B%5Ccos%20%28%5Cfrac%7B3%20%5Cpi%7D%7B12%7D%29%20%2B%20i%5Csin%20%28%5Cfrac%7B3%20%5Cpi%7D%7B12%7D%29%5D%5E5%20%3D%20%5Ccos%20%28%5Cfrac%7B15%20%5Cpi%7D%7B12%7D%29%20%2B%20i%5Csin%20%28%5Cfrac%7B15%20%5Cpi%7D%7B12%7D%29%7D%7D)
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Mathematics
Chapter: Complex Numbers
Keywords: Complex , Number , Real , Imaginary , Whole , Natural , Integers