Given:
The probability for success of an event is P(A)
The probability of success of a second, independent event is P(B).
To find:
The probability of both events occurring, in that order.
Solution:
If A and B are two independent events, then

It is given that,
The probability for success of an event is P(A)
The probability of success of a second, independent event is P(B).
Since A and B both are independent event and we need to find the probability of both events occurring, in that order, i.e.,
, therefore
.
Hence, the correct option is A.
Answer:
8.54
Step-by-step explanation:
formula:





d= 8.54
≈0.128 is the correct answer
Answer:
1. $8.77
2. 498.456
Step-by-step explanation:
Answer: 
Step-by-step explanation:
Properties of logarithm:

Consider,
![2\log x-\log y+2 \log z\\\\ =\log x^2-\log y+\log z^2\ \ \ \ \text{[By (i)]}\\\\= \log x^2+\log z^2-\log y\\\\=\log(x^2z^2)-\log y\ \ \ \ [\text{By } (ii) ]\\\\=\log(\dfrac{x^2z^2}{y}) \ \ \ \ [\text{By (iii)}]](https://tex.z-dn.net/?f=2%5Clog%20x-%5Clog%20y%2B2%20%5Clog%20z%5C%5C%5C%5C%20%3D%5Clog%20x%5E2-%5Clog%20y%2B%5Clog%20z%5E2%5C%20%5C%20%5C%20%5C%20%5Ctext%7B%5BBy%20%28i%29%5D%7D%5C%5C%5C%5C%3D%20%5Clog%20x%5E2%2B%5Clog%20z%5E2-%5Clog%20y%5C%5C%5C%5C%3D%5Clog%28x%5E2z%5E2%29-%5Clog%20y%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20%7D%20%28ii%29%20%5D%5C%5C%5C%5C%3D%5Clog%28%5Cdfrac%7Bx%5E2z%5E2%7D%7By%7D%29%20%20%20%20%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20%28iii%29%7D%5D)