The Avery–MacLeod–McCarty experiment<span> was an experimental demonstration, reported in 1944 by </span>Oswald Avery<span>, </span>Colin MacLeod<span>, and </span>Maclyn McCarty<span>, that </span>DNA<span> is the substance that causes </span>bacterial transformation<span>, in an era when it had been widely believed that it was </span>proteins<span> that served the function of carrying genetic information (with the very word </span>protein<span> itself coined to indicate a belief that its function was </span>primary<span>).
It was the culmination of research in the 1930s and early 20th Century at the </span>Rockefeller Institute for Medical Research<span> to purify and characterize the "transforming principle" responsible for the transformation phenomenon first described in </span>Griffith's experiment<span> of 1928: killed </span>Streptococcus pneumoniae<span> of the </span>virulent<span> strain type III-S, when injected along with living but non-virulent type II-R pneumococci, resulted in a deadly infection of type III-S pneumococci.
In their paper "</span>Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III<span>", published in the February 1944 issue of the </span>Journal of Experimental Medicine<span>, Avery and his colleagues suggest that DNA, rather than protein as widely believed at the time, may be the hereditary material of bacteria, and could be analogous to </span>genes<span> and/or </span>viruses<span> in higher organisms.</span>
Answer:
Amino acid sequences
Explanation:
The proteins perform the vast majority of functions in the cells. If a gene between a human and a mouse is evolutionarily related, it means that the function they do in the cell is quite similar in both species. This is the reason why the amino acid sequence would be the most similar.
In addition, there might be certain mutations in the DNA and therefore in the RNA between this 2 sequences that encode to the same amino acid sequence. More specifically speaking, there are more than one codon that encode to the same aminoacid. Thus, 2 different DNA/RNA sequence can give the same aminoacid sequence.
The correct answer would Be C because Most plants would Bend their stems to the sun