Answer:
The correct answer will be option-sequencing DNA from a group of species from the same ecosystem
Explanation:
Metagenomics is the molecular genetic tool used by the molecular biologists in studying the DNA samples of the uncultured organisms.
The metagenomics involves the collected samples of the environment directly sharing the same ecology. This involves the collection of samples of multiple organisms at the same time as the case of microorganism and then differentiating the DNA samples.
The technology provides an advantage over genomics and used by the environmentalist and microbiologist mostly.
Thus, the selected option is the correct answer.
Answer:
1)
- frequencies of light-colored mice ≅ 0.74
- frequencies of dark-colored mice ≅ 0.26
2)
- frequencies of light-colored mice ≅ 0.13
- frequencies of dark-colored mice ≅ 0.87
3)
- q² = 0.74
- p² = 0.02
- 2pq = 0.24
4)
- q² = 0.13
- p² = 0.4
- 2pq = 0.46
5)
The dark-colored fur seems to have the greatest overall selective advantage
6)
Dark lava, that changed the color of the substrate, from light to dark.
7)
Because to produce dark color, animals from the different regions suffered different mutations that drove them to have almost the same dark fur color. All of the animals are inhabiting dark substrate, which means that this environmental condition is favoring the same phenotype.
8)
To see if the mice population is evolving, you need to take a sample of animals per year, through many years, and analyze if it is changing or not. If the population is evolving, you will notice a change in the allelic and genotypic frequencies over the years, favoring one genotype or the other. If the population is not evolving, the frequencies will keep equal through the years, it will not change.
Explanation:
Due to technical problems, you will find the complete explanation in the attached files.
Answer:
I'm not sure but I think it should be the enzyme inhibitor binds to the products of the reaction which makes the enzyme unproductive
Explanation:
By binding to enzymes' active sites, inhibitors reduce the compatibility of substrate and enzyme and this leads to the inhibition of Enzyme-Substrate complexes' formation, preventing the catalyzation of reactions and decreasing (at times to zero) the amount of product produced by a reaction. It can be said that as the concentration of enzyme inhibitors increases, the rate of enzyme activity decreases, and thus, the amount of product produced is inversely proportional to the concentration of inhibitor molecules. Since blocking an enzyme's activity can kill a pathogen or correct a metabolic imbalance, many drugs are enzyme inhibitors. The binding of an inhibitor can stop a substrate from entering the enzyme's active site and/or hinder the enzyme from catalyzing its reaction. Inhibitor binding is either reversible or irreversible. Irreversible inhibitors usually react with the enzyme and change it chemically (e.g. via covalent bond formation).