Answer:
Step-by-step explanation:
Answer:

Step-by-step explanation:
The Side-Angle-Side method cana only be used when information given shows that an included angle which is between two sides of a ∆, as well as the two sides of the ∆ are congruent to the included side and two sides of the other ∆.
Thus, since John already knows that
and
, therefore, an additional information showing that the angle between
and
in ∆ABC is congruent to the angle between
and
in ∆DEF.
For John to prove that ∆ABC is congruent to ∆DEF using the Side-Angle-Side method, the additional information needed would be
.
See attachment for the diagram that has been drawn with the necessary information needed for John to prove that ∆ABC is congruent to ∆DEF.
Let p be
the population proportion. <span>
We have p=0.60, n=200 and we are asked to find
P(^p<0.58). </span>
The thumb of the rule is since n*p = 200*0.60
and n*(1-p)= 200*(1-0.60) = 80 are both at least greater than 5, then n is
considered to be large and hence the sampling distribution of sample
proportion-^p will follow the z standard normal distribution. Hence this
sampling distribution will have the mean of all sample proportions- U^p = p =
0.60 and the standard deviation of all sample proportions- δ^p = √[p*(1-p)/n] =
√[0.60*(1-0.60)/200] = √0.0012.
So, the probability that the sample proportion
is less than 0.58
= P(^p<0.58)
= P{[(^p-U^p)/√[p*(1-p)/n]<[(0.58-0.60)/√0...
= P(z<-0.58)
= P(z<0) - P(-0.58<z<0)
= 0.5 - 0.2190
= 0.281
<span>So, there is 0.281 or 28.1% probability that the
sample proportion is less than 0.58. </span>
O=4i (is that was you were asking about)
edit: sorry that wasn't very detailed say if the input is 4 the output will be 16 or if the input is 100 the output will be 400. So mainly what ever the input is multiply it by 4.
I hope this helps :)