(3)-(6)
= -3
this is the answer
Her answer should look like y = x + 2, x ≤ 2
<h3>How to determine the equation?</h3>
The complete question is added as an attachment
From the attached graph, we have the following points
(x, y) = (2, 4) and (0, 2)
See that the difference between the y and x values is 2 where y > x
So, we have
y - x = 2
Add x to both sides
y = x + 2
The highest value of x in the graph is 2.
So, we have
x ≤ 2
Hence, her answer should look like y = x + 2, x ≤ 2
Read more about linear equations at:
brainly.com/question/1884491
#SPJ1
In a cylinder
height,h=40inches
diameter,d=16inches
radius,r=16/2
=8inches
so, by formula,
volume,v= πr^2h
=22/7*8*8*40
=8045.71 cubic inches
The first option,
both have to be negative, because they were originally both part of the one fraction, which was all negative.
(1) ∠ABC = 65°, ∠DBE = 65°, ∠CBE = 115°, ∠ABD = 115°
(2) ∠ABC = 62°, ∠DBE = 62°, ∠CBE = 118°, ∠ABD = 118°
Solution:
(1) In the given image ABC and DBE are vertical angles.
<u>Vertical angle theorem:</u>
If two angles are vertical then they are congruent.
⇒ ∠ABC = ∠DBE
⇒ 3x° + 38° = 5x° + 20°
Arrange like terms one side.
⇒ 38° – 20° = 5x° – 3x°
⇒ 18° = 2x°
⇒ x° = 9°
∠ABC = 3(9°) + 38° = 65°
∠DBE = 5(9°) + 20° = 65°
Adjacent angles in a straight line = 180°
⇒ ∠ABC + ∠CBE = 180°
⇒ 65° + ∠CBE = 180°
⇒ ∠CBE = 115°
∠ABD and ∠CBE are vertical angles.
∠ABD = 115°
(2) In the given image ABC and DBE are vertical angles.
⇒ ∠ABC = ∠DBE
⇒ 4x° + 2° = 5x° – 13°
Arrange like terms one side.
⇒ 13° + 2° = 5x° – 4x°
⇒ 15° = x°
∠ABC = (4(15°) + 2°) = 62°
∠DBE = 5(15°) – 13° = 62°
Adjacent angles in a straight line = 180°
⇒ ∠ABC + ∠CBE = 180°
⇒ 62° + ∠CBE = 180°
⇒ ∠CBE = 118°
∠ABD and ∠CBE are vertical angles.
∠ABD = 118°