$6462.5
Simple Interest = (Principal × Rate × Time) / 100
SI = (P×R×T) / 100
P = 5500
R = 3.5
T = 5
[substitute the values into the formula]
SI = (5500 × 3.5 × 5) / 100
SI = 96250 / 100
SI = 962.5
Total = Principal + Simple Interest
T = P + SI
T = 5500 + 962.5
T = 6462.5
The total value of the account after 5 years will be $6462.5
8 - 5p = 2 - 3p
Move the terms
= -5p + 3p = 2-8
Collect like terms (calculate)
= -2p = -6
Divide both sides
p = 3 (Final Answer)
Answer:
How to solve your problem
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+y^{3}y-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
Simplify
1
Combine exponents
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{3}y}}-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{4}}}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
2
Combine like terms
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-7y^{2}}}{\color{#c92786}{-2y^{2}}}+y^{4}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
−
9
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-9y^{2}}}+y^{4}-2y+5y^{3}-2y
−9y2+y4−2y+5y3−2y
3
Combine like terms
−
9
2
+
4
−
2
+
5
3
−
2
-9y^{2}+y^{4}{\color{#c92786}{-2y}}+5y^{3}{\color{#c92786}{-2y}}
−9y2+y4−2y+5y3−2y
−
9
2
+
4
−
4
+
5
3
-9y^{2}+y^{4}{\color{#c92786}{-4y}}+5y^{3}
−9y2+y4−4y+5y3
4
Rearrange terms
−
9
2
+
4
−
4
+
5
3
{\color{#c92786}{-9y^{2}+y^{4}-4y+5y^{3}}}
−9y2+y4−4y+5y3
4
+
5
3
−
9
2
−
4
{\color{#c92786}{y^{4}+5y^{3}-9y^{2}-4y}}
y4+5y3−9y2−4y
Solution
4
+
5
3
−
9
2
−
4
Answer:
-26
Step-by-step explanation:
2 is 14 away from -12. The other number that is 14 away from -12 is -26.
-12 + x = 2
x = 14
-12 - 14 = -26
Answer:
Infinite amount of solutions
Step-by-step explanation:
Step 1: Write equation
4(3x + 3) = 15x + 7 - 3x + 5
Step 2: Solve for <em>x</em>
- Distribute 4: 12x + 12 = 15x + 7 - 3x + 5
- Combine like terms: 12x + 12 = 12x + 12
- Subtract 12 on both sides: 12x = 12x
- Divide both sides by 12: x = x
Here, we can see that <em>x</em> would be infinite amount of solutions. We can plug in any number <em>x</em> and it would render the equation true.