He answered .85, 85% or 17/20 correct on the test.
1. 4 3/4 feet = 19/4 feet
2 2/5 feet=12/5 feet.
multiplying them together yields


Part 2:
11.4 ft^2 - 4 1/2 ft^2=
11.4-4.5=6.9 ft^2 = 69/10 ft^2 left after you subtract the decoration in the middle
Now you're trying to find now many rectangular cutouts (that each are 3/8 ft^2) will fit in the remaining space.
You do that by dividing the remaining space left by 3/8:

since you have to have a whole number of cutouts, you round 92/5 down to 90/5, which is
18 cutouts
3.) A *the first one*
4.) C *the last one*
Answer:
Bottom left corner and bottom right corner
Step-by-step explanation:
Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.