<span>
<span> 250g H2SO4 x 1moleH2SO4/ 98g mole H2SO4 x 4moles Oxygen/1moleH2SO4 x 1moleOxgen/16g Oxygen
= 163.27g Oxygen
my figures aren't exact....so it's 160g </span>
</span>
<span>1. What is the molar mass of gold?
Molar mass is a unit that expresses the mass of a molecule per one mol. The molar mass can be obtained by adding the neutron with the proton of the atoms. Gold has atomic number 79 so the proton is 79. The number of the neutron is 118. Then the molar mass would be: 79 + 118 = </span>197 g/mol<span>
</span><span>2. Calculate the number of moles of gold (Au) in the sample. Show your work.
</span>In this question, you are given the mass of the gold and asked for how many moles the sample has. To find the number of moles you just need to divide the weight by the molar mass.
For 45.39 grams of gold, the number of moles would be:
45.39 / (197g/mol)= 0.23 moles
3. Calculate the number of atoms of gold (Au) in the sample. Show your work.Moles is unit of a number of molecules but 1 mol doesn't represent 1 molecule. The number of atoms can be obtained by multiplying the number of moles with Avogadro number. The calculation would be:
0.23 moles * (6.023 * 10^23 molecules/mol)= 1.387 * 10^23 molecules
The question is incomplete, the complete question is;
An alcohol thermometer makes use of alcohol's changing _______ in order to measure temperature. As the temperature goes up, the alcohol contained in the thermometer increases in volume, filling more of the thermometer's tube.
A.
mass
B.
state
C.
chemical composition
D.
density
Answer:
D.
density
Explanation:
Every kind of thermometer makes use of a change in a particular physical property of a substance as a measure of temperature. It must be a property that changes with temperature.
Density of a substance changes with temperature. Even though the mass of alcohol in glass remains constant, but its volume increases or decreases with change in temperature leading to a change in volume and consequently a change in density of the alcohol in glass. This change is used as a measure of the change in temperature.
Answer:
<u>5 moles S x (36.02 g S/mole S) = 180.1 grams of S</u>
Explanation:
The periodic table has mass units for every element that can be correlated with the number of atoms of that element. The relationship is known as Avogadro's Number. This number, 6.02x
, is nicknamed the mole, which scientists found to be a lot more catchy, and easier to write than 6.02x
. <u>The mole is correlated to the atomic mass of that element.</u> The atomic mass of sulfur, S, is 36.02 AMU, atomic mass units. <u>But it can also be read as 36.02 grams/mole.</u>
<u></u>
<u>This means that 36.02 grams of S contains 1 mole (6.02x</u>
<u>) of S atoms</u>.
<u></u>
This relationship holds for all the elements. Zinc, Zn, has an atomic mass of 65.38 AMU, so it has a "molar mass" of 65.38 grams/mole. ^5.38 grams of Zn contains 1 mole of Zn atoms.
And so on.
5.0 moles of Sulfur would therefore contain:
(5.0 moles S)*(36.02 grams/mole S) = <u>180.1 grams of S</u>
Note how the units cancel to leaves just grams. The units are extremely helpful in mole calculations to insure the correct mathematical operation is done. To find the number of moles in 70 g of S, for example, we would write:
(70g S)/(36.02 grams S/mole S) = 1.94 moles of S. [<u>Note how the units cancel to leave just moles</u>]