We want to use a matrix to solve
-8x - 8y = -16
6x - 9y = -108
Before solving, simplify the equations as follows:
Divide the first equation by -8 to obtain
x + y = 2 (1)
Divide the second equation by 3 to obtain
2x - 3y = -36 (2)
In matrix form, the equations are
![\begin{bmatrix}1&1\\2&-3\end{bmatrix} \begin{\bmatrix} x\\y\end{bmatrix}=\begin{bmatrix}2 \\ -36 \end{bmatrix}](https://tex.z-dn.net/?f=%20%20%5Cbegin%7Bbmatrix%7D1%261%5C%5C2%26-3%5Cend%7Bbmatrix%7D%20%5Cbegin%7B%5Cbmatrix%7D%20x%5C%5Cy%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D2%20%5C%5C%20-36%20%5Cend%7Bbmatrix%7D)
The determinant of the matrix is
D = (1)(-3) - (1)(2) = -5
Use Cramer's Rule.
![x = \frac{1}{D} det(\begin{bmatrix}2&1\\-36&-3 \end{bmatrix} ) = \frac{1}{-5} (-6+36) = -6](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B1%7D%7BD%7D%20det%28%5Cbegin%7Bbmatrix%7D2%261%5C%5C-36%26-3%20%5Cend%7Bbmatrix%7D%20%29%20%3D%20%20%5Cfrac%7B1%7D%7B-5%7D%20%28-6%2B36%29%20%3D%20-6)
Similalrly,
![y= \frac{1}{-5} det(\begin{bmatrix} 1&2\\2&-36\end{bmatrix} ) = \frac{1}{-5}(-36-4) =8](https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B1%7D%7B-5%7D%20det%28%5Cbegin%7Bbmatrix%7D%201%262%5C%5C2%26-36%5Cend%7Bbmatrix%7D%20%29%20%3D%20%5Cfrac%7B1%7D%7B-5%7D%28-36-4%29%20%3D8)
Answer: (-6, 8) or x = -6, y = 8