1840 calories. I might be wrong so don't rely on me 100%. Sorry.
2)
x^2 - 14x - 32 = x^2 - 16x + 2x - 32 = x(x-16) + 2(x-16) = (x - 16)(x + 2)
<h2>
⇒ x^2 - 14x - 32 = (x - 16)(x + 2)</h2>
---------
3)
2n^2 - 7n - 15 =
= 2n^2 - 10n + 3n - 15 =
= 2n(n - 5) + 3(n - 5) =
= (n - 5)(2n + 3)
<h2>
⇒ 2n^2 - 7n - 15 = (n - 5)(2n + 3)</h2>
---------
4)
<h2>
x^2 - 25 = (x - 5)(x + 5)</h2>
Answer:
There is no solution to this system.
Step-by-step explanation:
The left side of the first equation is 3 times the left side of the second one.
If we multiply the whole of the second equation by 3 we get:
3x - 6y = -16.
As the first equation is 3x - 6y = -12 we see that there is no solution to this system. 3x - 6y can't be equal to -12 and -16.
Answer:
1.) 
2.)
3.)
4.) 
5.) 
6.) 
Step-by-step explanation:
Use the 30°-60°-90° formulas:
a.

b.

1.) Insert values for a:

Simplify:

Insert values for b:

Simplify:

2.) Insert values for a:

Simplify:

Insert values for b:

Simplify:

3.) Insert values for a:

Simplify:

Insert values for b:

Simplify:

4.)Insert values for a:

Simplify:

Insert values for b:

Simplify:

5.) Insert values for a:

Divide both sides by
and rationalize:

Flip:

Insert values for b:

Simplify:

6.) Insert values for a:

Divide both sides by
and rationalize:

Flip:

Insert values for b:

Simplify:

Finito.
Answer:
Flux = 16π
Step-by-step explanation:
The outward flux of F across the solid cylinder and z = 0 is
∫∫F*ds = ∫∫∫ DivF*dv
F = 2xy²i + 2x²yj + 2xyk
DivF = D/dx (2xy²) + D/dy (2x²y )
DivF = 2y² + 2x²
In cylindrical coordinates dV = rdrdθdz and as z = 0 the region is a surface ds = rdrdθ
Parametryzing the surface equation
x = rcosθ y = r sinθ and z = z
Div F = 2r²sin²θ + 2r²cos²θ
∫∫∫ DivF*dv = ∫∫ [2r²sin²θ + 2r²cos²θ]* rdrdθ
∫∫ 2r² [sin²θ + cos²θ]* rdrdθdz ⇒ ∫∫ 2r³ drdθ
Integration limits
0 < r < 2 0 < θ < 2π
2∫₀² r³ ∫dθ
(2/4)(2)⁴ 2π
Flux = 16π