Answer:
Mole ratio for a compound
The chemical formula tells us the mole ratio.
CO2 = 1 CO2 molecule : 1 C atom : 2 O atoms.
Mole ratio for a reaction
The balanced chemical reactions tells us.
C12H22O11 + 12 O2 12 CO2 + 11 H2O
1 C12H22O11 molecule: 12 O2 molecules : 12 CO2
molecules : 11 H2O molecules.
Applications of the mole ratio concept
grams <--> moles <--> moles <--> grams
Explanation:
Answer:
Yes, a mole is defined as 6x1023 of something, so a mole of stars is 6x1023 stars. If we compare this number to our estimate of the total number of stars, we find that there is about 1/10 of a mole of stars in the Universe.
Hope this helps!
Answer:
by the VSEPR theory.
Explanation:
This question is asking for the bond angle of the
bond in
. The VSEPR (valence shell electron pair repulsion) theory could help. Start by considering: how many electron domains are there on the carbon atom between these two bond?
Note that "electron domains" refer to covalent bonds and lone pairs collectively.
- Each nonbonding pair (lone pair) of valence electrons counts as one electron domain.
- Each covalent bond (single bond, double bond, or triple bond) counts as exactly one electron domain.
For example, in
, the carbon atom at the center of that
bond has two electron domains:
- This carbon atom has two double bonds: one
bond and one
bond. Even though these are both double bonds, in VSEPR theory, each of them count only as one electron domain. - Keep in mind that there are only four valence electrons in each carbon atom. It can be shown that all four valence electrons of this carbon atom are involved in bonding (two in each of the two double bonds.) Hence, there would be no nonbonding pair around this atom.
In VSEPR theory, electron domains around an atom repel each other. As a result, they would spread out (in three dimensions) as far away from each other as possible. When there are only two electron domains around an atom, the two electron domains would form a straight line- with one domain on each side of the central atom. (To visualize, consider the three atoms in this
bond as three spheres on a stick. The central
atom would be between the other
atom and the
atom.)
This linear geometry corresponds to a bond angle of
.
Answer:
the large object moving quickly because the more the mas the more kenetic energy