Write the equations in matrix,
![\left[\begin{array}{ccc}5&-1&1\\1&2&-1\\2&3&-3\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C1%262%26-1%5C%5C2%263%26-3%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using row transformation,
R₂ <---> R₃
![\left[\begin{array}{ccc}5&-1&1\\2&3&-3\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C2%263%26-3%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ ---> R₂ - 2R₃
![\left[\begin{array}{ccc}5&-1&1\\0&-1&-1\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\-5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%26-1%26-1%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C-5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ --- > (-1)R₂
![\left[\begin{array}{ccc}5&-1&1\\0&1&1\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%261%261%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using row transformation,
R₂ <----> R₃
![\left[\begin{array}{ccc}5&-1&1\\1&2&-1\\0&1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C1%262%26-1%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ ---> R₂ - R₁/5
![\left[\begin{array}{ccc}5&-1&1\\0&11/5&-6/5\\0&1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\21/5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%2611%2F5%26-6%2F5%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C21%2F5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₃ ---> R₃ - 5R₂/11
![\left[\begin{array}{ccc}5&-1&1\\0&11/5&-6/5\\0&0&17/11\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\21/5\\34/11\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%2611%2F5%26-6%2F5%5C%5C0%260%2617%2F11%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C21%2F5%5C%5C34%2F11%5Cend%7Barray%7D%5Cright%5D%20)
∴ 5x-y+z = 4 ====(i)
11y-6z = 21 === (ii)
17z=34 === (iii)
from iii,
z=2.
Plug z=2 in ii to get y,
∴y=3.
Plug y and z values in i to get x,
∴x=1
Therefore the solution to the system of equations is (1,3,2)
To overcome and identify outliers, the data obtained can be arranged into from the highest to lowest and be oberved on which values have the highest or lowest value.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
here
Step-by-step explanation:
I also send the graph
if you want to expand i can write that too
Answer:

Step-by-step explanation:
By definition, the tangent of an angle is the quotient between the side opposite the angle and the side adjacent to the angle
In other words:

In this triangle, the length of the side adjacent to the desired angle is 50, and the length of the opposite side is 48
So:

Finally

Answer:
A. Factoring; Completing the Square; Quadratic Formula; Graphing
B. All real numbers; 2 complex roots; 1 real root; 2 distinct real roots
C. 2 complex roots