
so as you can see the common ratio is 2, and the first term is 1/2,

Answer:
0.087
Step-by-step explanation:
Given that there were 17 customers at 11:07, probability of having 20 customers in the restaurant at 11:12 am could be computed as:
= Probability of having 3 customers in that 5 minute period. For every minute period, the number of customers coming can be modeled as:
X₅ ~ Poisson (20 (5/60))
X₅ ~ Poisson (1.6667)
Formula for computing probabilities for Poisson is as follows:
P (X=ₓ) = ((<em>e</em>^(-λ)) λˣ)/ₓ!
P(X₅= 3) = ((<em>e</em>^(-λ)) λˣ)/ₓ! = (e^-1.6667)((1.6667²)/3!)
P(X₅= 3) = (2.718^(-1.6667))((2.78)/6)
P(X₅= 3) = (2.718^(-1.6667))0.46
P(X₅= 3) = 0.1889×0.46
P(X₅= 3) = 0.086894
P(X₅= 3) = 0.087
Therefore, the probability of having 20 customers in the restaurant at 11:12 am given that there were 17 customers at 11:07 am is 0.087.
Y = mx + c therefore
m = 1
c = -2
The tangent of x is defined to be its sine divided by its cosine: tan x = sin x cos x . The cotangent of x is defined to be the cosine of x divided by the sine of x: cot x = cos x sin x .