Answer:
The population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Step-by-step explanation:
- 6% of the city's population moves to the suburbs (and 94% stays in the city).
- 2% of the suburban population moves to the city (and 98% remains in the suburbs).
The migration matrix is given as:
![A= \left \begin{array}{cc} \\ C \\S \end{array} \right\left[ \begin{array}{cc} C&S\\ 0.94&0.06 \\0.02&0.98 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%20%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20%5C%5C%20C%20%5C%5CS%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D)
The population in the year 2000 (initial state) is given as:
![\left[ \begin{array}{cc} C&S\\ 500,000&700,000 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%20500%2C000%26700%2C000%20%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city and the suburb in 2002 (two years after) is:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right\left[ \begin{array}{cc} 0.94&0.06 \\0.02&0.98 \end{array} \right]^2](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D%5E2)
![A^{2} = \left[ \begin{array}{cc} 0.8848 & 0.1152 \\\\ 0.0384 & 0.9616 \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B2%7D%20%3D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right \left[ \begin{array}{cc} 0.8848 & 0.1152 \\ 0.0384 & 0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 500,000*0.8848+700,000*0.0384& 500,000*0.1152 +700,000*0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 469280& 730720 \end{array} \right]](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20500%2C000%2A0.8848%2B700%2C000%2A0.0384%26%20500%2C000%2A0.1152%20%2B700%2C000%2A0.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20469280%26%20730720%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
divide total bags by number of hours
30 bags / 3 hors = 10 bags per hour
he racked 10 bags per hour
Answer:
132%
Step-by-step explanation:
The population of Peru = 10904
The population of Franklin = 25248.
Difference = 25248-10904=14,344
Expressing as a percentage of the population of Peru

=132%
Therefore, the population of Franklin is 132% more than the population of Peru.
Answer:
D= -16.8
Step-by-step explanation:
Answer:
Let's see what you can do with parallel and perpendicular. In other words, the slopes of parallel lines are equal. Note that two lines are parallel if their slopes are equal and they have different y-intercepts. In other words, perpendicular slopes are negative reciprocals of each other