1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
5

3) A box of chocolates contains four milk

Mathematics
2 answers:
Lady_Fox [76]3 years ago
6 0

Answer:

dependent and 2/7

Step-by-step explanation:

dependent because you didn't replace it.

1/2 times 4/7 which is 4/14 which equals to 2/7

ArbitrLikvidat [17]3 years ago
3 0

Answer:

Step-by-step explanation:

huh

You might be interested in
In the coordinate plane, what is the length of the line segment that connects points at (5, 4) and (−3, −1) ? Enter your answer
stiks02 [169]
The distance between two points knowing theirs coordinates:

AB =√[(x₂-x₁)² +(y₂-y₁)²]; ===>A(5,-4) & B(-3,-1) Given
                                                A(x₁,y₁) & B(x₂,y₂)

AB =√[(-3-5))²+(-1-(-4)²] =√(73) = 8.381 ≈ 5.44 units
3 0
2 years ago
What is the difference of the ones and the tenth digit of the pi?​
antiseptic1488 [7]

Answer:

<h3>2</h3>

Step-by-step explanation:

The value of pi is 22/7

Expressing as a decimal, the first ten digits of pi is 3.1415926535

The value in the tenth digit of the pi is 5 (tenth value after the decimal point)

The value of the ones is 3(The value before the decimal point)

The difference between both values = 5 - 3

The difference between both values = 2

Hence the difference of the ones and the tenth digit of the pi is 2

8 0
2 years ago
The end points of one diagonal of a rhombus are (-5,2) and (1,6). If the coordinates of the 3rd vertexare (-6,10), what are the
ad-work [718]
Look at the picture.

E\left(\dfrac{-5+1}{2};\ \dfrac{2+6}{2}\right)\to E\left(\dfrac{-4}{2};\ \dfrac{8}{2}\right)\to E(-2;\ 4)

\vec{BE}=[-2-(-6);\ 4-10]=[4;\ -6]

D(x;\ y)\\\\\vec{ED}=[x-(-2);\ y-4]=[x+2;\ y-4]\\\\\vec{ED}=\vec{BE}\ therefore\\\\ \ [x+2;\ y-4]=[4;\ -6]\to x+2=4\ and\ y-4=-6\\\\x=2\ and\ y=-2\\\\Answer:\ \boxed{A.\ (2;\ -2)}

8 0
2 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
A B C OR D PLEASE HELP !!!!!!!!!!!!!!!!!!!!!!!!!!! I REALLY APPRECIATE
ddd [48]

Answer: B


Step-by-step explanation: Okay so you add 6m and 1m to get 7m for that entire side. Then you have 3m on each side that is slanted. You finally add 5m.

7m + 3m + 3m + 5m = 18m^2


4 0
3 years ago
Other questions:
  • Georgia, a florist, charges 10.95 per flower bundle plus a 15 delivery charge per order. If Charlie orders 8 bundles of flowers
    11·2 answers
  • Which equations have the same solution? choose all answers that are correct.
    8·2 answers
  • Someone anyone help me please
    13·2 answers
  • The area of a playground is 216 yd^2. The width of the playground is 6 yd longer than its length. Find the length and width of t
    12·1 answer
  • a bicycle has a listed price of $821.95 before tax. if the sales tax rate is 6.5%, find the total cost of the bicycle with sales
    5·1 answer
  • Wilbur's Bean Emporium serves barbeque sandwiches over the lunch hour. The marginal cost of the 50 th barbeque sandwich is $1.50
    6·1 answer
  • I don’t understand this at all...can someone give me the answer or help me figure it out!?
    8·1 answer
  • At a sale, dresses were sold for $22 each. This price was 55% of a dress's original price. How much did a dress originally cost?
    5·2 answers
  • 4x + 8 = 32 pleas eexplain
    13·2 answers
  • PLEASE HURRY!!!!! Which statement describes the situation shown in the graph?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!