Answer: x=4 ; y=<u> -4</u>
3
Step-by-step explanation:
2x + y = -4
.(-3)
2x + 3y = 4
-6x-3y=12
<u>2x + 3y = 4</u>
4x=16
x= <u>16</u>
4
x=4
2x + 3y = 4
2.4+3y=4
8+3y=4
3y= -8+4
y=<u> -4</u>
3
Percent = part/whole
It wants you to find the % of change so it's 3.25 / 3.75
And that comes out to be 0.86 (with the 6 repeating)
So you move the decimal over 2 places to find the percent.
And then it's 1 - Ans
The answer is 13.33%
Hey there!
12 ≥ 5f - 18
5f - 18 ≤ 12
ADD 18 to BOTH SIDES
5f - 18 + 18 ≤ 12 + 18
SIMPLIFY IT!
5f ≤ 30
DIVIDE 5 to BOTH SIDES
5f/5 ≤ 30/5
SIMPLIFY IT!
f ≤ 6
Therefore, your answer is: f ≤ 6
Good luck on your assignment & enjoy your day!
~Amphitrite1040:)
X = 0.6x + 384 |subtract 0.6x from both sides
0.4x = 384 |divide both sides by 0.4
x = 960
Answer:
titutex=cos\alp,\alp∈[0:;π]
\displaystyle Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+
1−x
2
∣=
2
(2x
2
−1)\Leftright∣cos\alp+sin\alp∣=
2
(2cos
2
\alp−1)
\displaystyle |\N {\sqrt{2}}cos(\alp-\frac{\pi}{4})|=\N {\sqrt{2}}cos(2\alp )\Right \alp\in[0\: ;\: \frac{\pi}{4}]\cup [\frac{3\pi}{4}\: ;\: \pi]∣N
2
cos(\alp−
4
π
)∣=N
2
cos(2\alp)\Right\alp∈[0;
4
π
]∪[
4
3π
;π]
1) \displaystyle \alp \in [0\: ;\: \frac{\pi}{4}]\alp∈[0;
4
π
]
\displaystyle cos(\alp -\frac{\pi}{4})=cos(2\alp )\dotscos(\alp−
4
π
)=cos(2\alp)…
2. \displaystyle \alp\in [\frac{3\pi}{4}\: ;\: \pi]\alp∈[
4
3π
;π]
\displaystyle -cos(\alp -\frac{\pi}{4})=cos(2\alp )\dots−cos(\alp−
4
π
)=cos(2\alp)…
1
Top
Display