The centroid of a triangle divides the median of the triangle into 1 : 2
The measure of FQ is 18, while the measure of TQ is 6
Because point T is the centroid, then we have the following ratio
![\mathbf{TQ : FT =1 : 2}](https://tex.z-dn.net/?f=%5Cmathbf%7BTQ%20%3A%20FT%20%3D1%20%3A%202%7D)
Where FT = 12.
Substitute 12 for FT in the above ratio
![\mathbf{TQ : 12 =1 : 2}](https://tex.z-dn.net/?f=%5Cmathbf%7BTQ%20%3A%2012%20%3D1%20%3A%202%7D)
Express as fraction
![\mathbf{\frac{TQ }{ 12} =\frac{1 }{ 2}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cfrac%7BTQ%20%7D%7B%2012%7D%20%3D%5Cfrac%7B1%20%7D%7B%202%7D%7D)
Multiply both sides by 12
![\mathbf{TQ =\frac{1 }{ 2} \times 12}](https://tex.z-dn.net/?f=%5Cmathbf%7BTQ%20%3D%5Cfrac%7B1%20%7D%7B%202%7D%20%5Ctimes%2012%7D)
This gives
![\mathbf{TQ =\frac{1 2}{ 2}}](https://tex.z-dn.net/?f=%5Cmathbf%7BTQ%20%3D%5Cfrac%7B1%202%7D%7B%202%7D%7D)
Divide 12 by 2
![\mathbf{TQ =6}](https://tex.z-dn.net/?f=%5Cmathbf%7BTQ%20%3D6%7D)
The measure of FQ is calculated using:
![\mathbf{FQ = FT + TQ}](https://tex.z-dn.net/?f=%5Cmathbf%7BFQ%20%3D%20FT%20%2B%20TQ%7D)
Substitute 12 for FT, and 6 for TQ
![\mathbf{FQ = 12 + 6}](https://tex.z-dn.net/?f=%5Cmathbf%7BFQ%20%3D%2012%20%2B%206%7D)
Add 12 and 6
![\mathbf{FQ = 18}](https://tex.z-dn.net/?f=%5Cmathbf%7BFQ%20%3D%2018%7D)
Hence, the measure of FQ is 18, while the measure of TQ is 6
Read more about centroids at:
brainly.com/question/11891965
![\frac{441}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B441%7D%7B4%7D)
change the mixed numbers to improper fractions and multiply the numerators / denominators
10
= ![\frac{21}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B2%7D)
×
=
= 1110 ![\frac{1}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D)
Answer:
![m=\frac{2k}{v^{2} }](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B2k%7D%7Bv%5E%7B2%7D%20%7D)
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
the answer is d because the amount of speed changes the total amount of distance that he travels in time
AnswerAccording to my caculations its B
Step-by-step explanation:Just trust me