Let
and
. Then


and


The expression under the square root can be rewritten as

Recall that

so that

and assuming
and
, we end up with

so that

as required.
Answer: k=65
Step-by-step explanation:
4x^2-3x+4y^2+4z^2=0
here we shall proceed as follows:
x=ρcosθsinφ
y=ρsinθsinφ
z=ρcosφ
thus
4x^2-3x+4y^2+4z^2=
4(ρcosθsinφ)^2-3(ρcosθsinφ)+4(ρsinθsinφ)^2+4(ρcosφ)
but
ρ=1/4cosθsinφ
hence we shall have:
4x^2-3x+4y^2+4z^2
=1/4cosθsinθ(cosθ(4-3sinφ))+4sin^2(φ)
<h3>Answer:</h3><h3>Exact volume =
32pi</h3><h3>Approximate volume =
100.48</h3>
The approximate volume only applies when pi = 3.14
Use either answer, but not both of course.
===============================================
Work Shown:
V = volume of cylinder
V = pi*r^2*h
V = pi*2^2*8
V = pi*32
V = 32pi .... exact volume in terms of pi
V = 32*3.14
V = 100.48 .... approximate volume when we use pi = 3.14