Answer:
Unlike typical mammalian red blood cells, those from amphibians, such as frogs, contain a DNA-bearing nucleus that is visible in the center of the cell. The circulatory system of amphibians is rather unusual, their hearts having three chambers, two atria, and a single ventricle.
NegativePositive
Positive
The design of the amphibian circulatory system is curious because blood accumulates oxygen in the lungs and is then returned to the heart before being pumped into the rest of the circulatory system. Therefore, a mixing between oxygenated and deoxygenated blood occurs as blood returning to the heart from the lungs is mixed with incoming blood from the body. Frogs handle this situation by having a very slow metabolism and by absorbing some oxygen through their skin. In addition, the ventricle does have some directional control over the distribution of the blood.
Negative
The presence of a nucleus in amphibian red blood cells allows researchers easy access to large quantities of amphibian DNA. Frog blood has both a solid and a liquid portion. The liquid plasma carries solid elements such as red and white blood cells. Blood can be collected from frogs and the red blood cells isolated by centrifugation. After removal of the residual plasma, purified cells can be treated with specific enzymes and detergents to digest the cellular envelope and release DNA from its protein complex. The DNA is then useful for scientific studies and experiments.
Featured in: Phase Contrast
Explanation:
Because by damaging capsids, there is no place for the bad DNA to be stored. So the drug destroys the DNA so no more of the virus can be stored in the body.
Answer:
See the answer below
Explanation:
The central dogma gives a description of how genetic information travels in biological cells from DNAs to proteins. DNAs are first transcribed into messenger RNAs in a process known as transcription and the resulting mRNAs are used in the synthesis of proteins in a process known as translation.
In eukaryotic cells, transcription process happens within the confines of the nucleus because the genetic material in the form of DNAs are always located in the nucleus. Thereafter, the mRNAs generated from transcription are transported to the cytoplasm of the cell where they become translated into proteins.
Hence;
- <em>T</em><em>ranscription</em><em> happens in the </em><em>nucleus</em><em> of the cell.</em>
- <em>Translation </em><em>happens in the </em><em>cytoplasm</em><em> of the cell.</em>
Answer:
Crustaceans and Molluscs play an important role in the oceanic carbon sink.
Explanation:
Carbon sinks can serve to partially offset greenhouse gas emissions. Forests and oceans are both large carbon sinks. Algae is pressurized to bottom of the ocean by long term sequestration. Algae then falls to the bottom of the ocean and TRANSFORMS to fossil fuels.
- CO2 is not combustible.
- creates carbonic acid in the oceans.
- Reduces seawater pH, carbonate ion concentration, and thus calcium carbonate (needed for shells for marine creatures, contributes to BOTTOM-UP EFFECT)
<em><u>If helpful, please mark as brainliest! =)</u></em>