The 15th term in the given A.P. sequence is a₁₅ = 33.
According to the statement
we have given that the A.P. Series with the a = 5 and the d is 2.
And we have to find the 15th term of the sequence.
So, for this purpose we know that the
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
And the formula is a
an = a + (n-1)d
After substitute the values in it the equation become
an = 5 + (15-1)2
a₁₅ = 5 + 28
Now the 15th term is a₁₅ = 33.
So, The 15th term in the given A.P. sequence is a₁₅ = 33.
Learn more about arithmetic progression here
brainly.com/question/6561461
#SPJ1
Step-by-step explanation:
sum of the ratio=3+3+4=10
now,
angle I = 3/10×180=54
angle II= 3/10×180=54
angle III=4/10×180=72
that shows th given triangle is isoceles
Shaded area = area of the hexagon – area of the pentagon + area of the square – area of the equilateral triangle. This can be obtained by finding each shaded area and then adding them.
<h3>Find the expression for the area of the shaded regions:</h3>
From the question we can say that the Hexagon has three shapes inside it,
Also it is given that,
An equilateral triangle is shown inside a square inside a regular pentagon inside a regular hexagon.
From this we know that equilateral triangle is the smallest, then square, then regular pentagon and then a regular hexagon.
A pentagon is shown inside a regular hexagon.
- Area of first shaded region = Area of the hexagon - Area of pentagon
An equilateral triangle is shown inside a square.
- Area of second shaded region = Area of the square - Area of equilateral triangle
The expression for total shaded region would be written as,
Shaded area = Area of first shaded region + Area of second shaded region
Hence,
⇒ Shaded area = area of the hexagon – area of the pentagon + area of the square – area of the equilateral triangle.
Learn more about area of a shape here:
brainly.com/question/16501078
#SPJ1
Answer:
The one on the top at you’re right
Answer:
568.3 into the nearest hundred
5.683