Answer:
-0.233 m left of diverging lens and ( 0.12 - 0.233 ) = -113 m left of conversing
and
0.023 m right of diverging lens
Explanation:
given data
focal length f2 = 14 cm = -0.14 m
Separation s = 12 cm = 0.12 m
focal length f1 = 21 cm = 0.21 m
distance u1 = 38 cm
to find out
final image be located and Where will the image
solution
we find find image location i.e v2
so by lens formula v1 is
1/f = 1/u + 1/v ...............1
v1 = 1/(1/f1 - 1/u1)
v1 = 1/( 1/0.21 - 1/0.38)
v1 = 0.47 m
and
u2 = s - v1
u2 = 0.12 - 0.47
u2 = -0.35
so from equation 1
v2 = 1/(1/f2 - 1/u2)
v2 = 1/(-1/0.14 + 1/0.35)
v2 = -0.233 m
so -0.233 m left of diverging lens and ( 0.12 - 0.233 ) = -113 m left of conversing
and
for Separation s = 45 cm = 0.45 m
v1 = 1/(1/f1 - 1/u1)
v1 =0.47 m
and
u2 = s - v1
u2 = 0.45 - 0.47 =- 0.02 m
so
v2 = 1/(1/f2 - 1/u2)
v2 = 1/(-1/0.14 + 1/0.02)
v2 = 0.023
so here 0.023 m right of diverging lens
Answer:
(a) Magnitude: 14.4 N
(b) Away from the +6 µC charge
Explanation:
As the test charge has the same sign, the force that the other charges exert on it will be a repulsive force. The magnitude of each of the forces will be:

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q and qtest is the charge of the particles, and r is the distance between the particles.
Let's say that a force that goes toward the +6 µC charge is positive, then:


The magnitude will be:
, away from the +6 µC charge
Look for scientific research about whether these claims are correct or not.
Explanation:
The best thing to do after reading this advertisement is to look for scientific research about whether these claims are correct or not.
<span>
In layman's term: </span>like charges don't attract while opposite charges do<span>electrostatic forces between point A( which is charged) and point B (which is also charged) are proportional to the charge of point A and point B. </span><span>there is also something else about this law that I don't quite remember.</span>
<span>___________________________________________________</span>
<span />Here is the formula:
<span>F = k x Q1 x Q2/d^<span>2</span></span>
<span>What the formula means:</span>
F=force between charges
Q1 and Q2= amount of charge
d=distance between these two charges
k= Coulombs constant (proportionally constant)
________________________________________________
I think that about covers it and hopefully this helped.